Advanced Materials Modeling Lecture of 16 april

- + Reminder about implementation of DFT for simulation of materials
- + Pseudopotentials, Projector Augmented Waves
- + Introduction to Advanced Material Properties lab : usage of ABINIT
- + Reminder about wavevector sampling
- + Launch of lab "Advanced Materials Properties"

Forthcoming (April 17, 21, 23, 24), linked to the lab :

DFT3 (forces and perturbations, iterative techniques, spin+magnetism) Accurate electronic structure (GW approximation)

Optical properties (absorption, index of refraction, luminescence),

Vibrational properties (phonons) and transport properties (electron-phonon)

A basic reference on DFT and Applications to solids

Richard M. Martin

Cambridge University Press, 2004

Electronic Structure : Basic Theory and Practical Methods

(ISBN: 0521782856)

Electronic Structure Basic Theory and Practical Methods

Richard M. Martin

For details, see

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521782856

Reminder : implementation of DFT for materials

Basic equations in DFT

Solve self-consistently the Kohn-Sham equation

$$\begin{pmatrix} \hat{H} | \boldsymbol{\psi}_{n} \rangle = \boldsymbol{\varepsilon}_{n} | \boldsymbol{\psi}_{n} \rangle \\ \hat{H} = \hat{T} + \hat{V} + \hat{V}_{Hxc}[n] \\ n(\mathbf{r}) = \sum_{n}^{occ} \boldsymbol{\psi}_{n}^{*}(\mathbf{r}) \boldsymbol{\psi}_{n}(\mathbf{r}) \\ n(\mathbf{r}) = \sum_{n}^{occ} \psi_{n}^{*}(\mathbf{r}) \boldsymbol{\psi}_{n}(\mathbf{r}) \\ \delta_{mn} = \langle \boldsymbol{\psi}_{m} | \boldsymbol{\psi}_{n} \rangle \text{for } m, n \in \text{occupied set} \\ \text{or minimize} \qquad E_{el} \{ \boldsymbol{\psi} \} = \sum_{n}^{occ} \langle \boldsymbol{\psi}_{n} | \hat{T} + \hat{V} | \boldsymbol{\psi}_{n} \rangle + E_{Hxc}[n] \\ \text{with} \qquad \hat{V}(\mathbf{r}) = \sum_{\kappa} - \frac{Z_{\kappa}}{|\mathbf{r} - \mathbf{R}_{\kappa}|}$$

Exchange-correlation functional might be LDA, GGA (e.g. PBE, PBESol), or hybrids, van der waals, etc

Skoltech

Materials : infinite extent, periodicity

Need periodic boundary conditions. Primitive vectors \mathbf{R}_i , primitive cell volume Ω_0

Solution : the supercell technique

Molecule, cluster

Surface : treatment of a slab Interface

Point defect in a bulk solid

The supercell must be sufficiently big : convergence study

Examples of defects SiO₂-quartz : Pb

72-atom supercell of quartz

Periodic system : wavevectors

For a periodic Hamiltonian : wavefunctions characterized by a wavevector $\,k$ (crystal momentum) in Brillouin Zone

Bloch theorem
$$\Psi_{m,k}$$
 $(\mathbf{r}+\mathbf{R}_{j}) = e^{i\mathbf{k}\cdot\mathbf{R}_{j}}\Psi_{m,k}$ (\mathbf{r})

$$\boldsymbol{\psi}_{m,\mathbf{k}} (\mathbf{r}) = \left(N \Omega_0 \right)^{-1/2} e^{i\mathbf{k}\cdot\mathbf{r}} u_{m,\mathbf{k}} (\mathbf{r}) \qquad u_{m,\mathbf{k}} (\mathbf{r} + \mathbf{R}_j) = u_{m,\mathbf{k}} (\mathbf{r})$$

Plane waves e^{iKr} : particularly simple and efficient (when used with pseudopotentials), infinite spatial extent.

Planewave basis set

Reciprocal lattice : set of G vectors such that $e^{iGR_j} = 1$ e^{iGr} has the periodicity of the real lattice

$$\begin{split} u_{k}(\mathbf{r}) &= \sum_{G} u_{k}(G) \ e^{iG\mathbf{r}} \qquad \qquad \psi_{k}(\mathbf{r}) = \left(N\Omega_{0}\right)^{-1/2} \sum_{G} u_{k}(G) \ e^{i(\mathbf{k}+G)\mathbf{r}} \\ u_{k}(G) &= \frac{1}{\Omega_{0}} \int_{\Omega_{0}} e^{-iG\mathbf{r}} \ u_{k}(\mathbf{r}) \ d\mathbf{r} \qquad \text{(Fourier transform)} \\ \text{Kinetic energy of a plane wave} \qquad -\frac{\nabla^{2}}{2} \rightarrow \frac{(\mathbf{k}+G)^{2}}{2} \\ \text{The coefficients } u_{k}(G) \ for the lowest eigenvectors \\ decrease exponentially with the kinetic energy} \qquad \frac{(\mathbf{k}+G)^{2}}{2} \\ \text{Selection of plane waves determined by a cut-off energy } E_{cut} \\ &= \frac{\left(\frac{\mathbf{k}+G\right)^{2}}{2} < E_{cut}}{2} \\ \text{Plane wave sphere} \\ &= \frac{ecut}{2} \end{split}$$

Convergence wrt to kinetic energy cutoff

AMM lecture 16 April

Plane waves : the density and potential

Fourier transform of a periodic function $f(\mathbf{r})$

$$f(\mathbf{G}) = \frac{1}{\Omega_{o\vec{r}}} \int_{\Omega_{o\vec{r}}} e^{-i\mathbf{G}\mathbf{r}} f(\mathbf{r}) d\mathbf{r} \qquad f(\mathbf{r}) = \sum_{\vec{G}} e^{i\mathbf{G}\mathbf{r}} f(\mathbf{G})$$

Poisson equation

$$V_{\rm H}(\mathbf{r}) = \int \left. \frac{\mathbf{n}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}\mathbf{r}' \iff \nabla^2 V_{\rm H} \right|_{\mathbf{r}} = -4\pi \, \operatorname{n}(\mathbf{r})$$

Relation between Fourier coefficients: \Rightarrow n (G) and V_H (G) $V_{\rm H}(G) = \frac{4\pi}{G^2}$ n(G) $G^2 V_{\rm H}(G) = 4\pi$ n(G)For G² =0 (G=0) divergence of V_H (G=0) $n(G=0) = \frac{1}{\Omega_{\rm or}} \int_{\Omega_{\rm or}} n(\mathbf{r}) d\mathbf{r}$ Average

Representation of the density

Density associated with one eigenfunction :

$$n_{nk}(\mathbf{r}) = u_{nk}^{*}(\mathbf{r}) u_{nk}(\mathbf{r})$$
Computation of
$$u_{nk}^{*}(\mathbf{r}) u_{nk}(\mathbf{r})$$

$$= \left(\sum_{G} u_{nk}^{*}(G) e^{iGr}\right) \left(\sum_{G'} u_{nk}(G') e^{-iG'r}\right)$$

$$= \sum_{GG'} \left[u_{nk}^{*}(G) u_{nk}(G')\right] e^{i(G'-G)r}$$
Non-zero coefficients for $\mathbf{k}+\mathbf{G} \in \text{sphere}$
 $\mathbf{k}+\mathbf{G}' \in \text{sphere}$

The sphere for n(G) has a double radius

Skoltech

k+G

G-G

k+G'

Representation : wrap-up

- Choice of a basis (e.g. Plane waves)
- Truncation of the basis : finite basis

 $\frac{(\mathbf{k}+\mathbf{G})^2}{2} < E_{cut}$ Sphere of plane waves

- Representation of the density
 Sphere with a double radius in the reciprocal space
- Going from the real space to reciprocal space

Discrete Fourier transform Grid of points + Fast Fourier Transform

$$\{\mathbf{r}_{i}\} \leftrightarrow \{\mathbf{G}\}$$

Pseudopotentials

Core and valence electrons (I)

Core electrons occupy orbitals that are « the same » in the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density...

$$n(\mathbf{r}) = \sum_{i}^{N} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$
$$= \sum_{i \in core}^{N_{core}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) + \sum_{i \in val}^{N_{val}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) = n_{core}(\mathbf{r}) + n_{val}(\mathbf{r})$$

« Frozen core » for $i \in core : \psi_i = \psi_i^{atom}$

Small core / Large core

It depends on the target accuracy of the calculation ! (remark also valid for pseudopotentials, with similar cores) For some elements, the core/valence partitioning is obvious, for some others, it is not.

F atom : $(1s)^{2} + (2s)^{2}(2p)^{5}$ IP 1keV 10-100 eV Ti atom : $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ small core $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ large core IP 99.2 eV 43.3eV

Gd atom : small core with n=1,2,3 shells , might include 4s, 4p, and 4d in the core. 4f partially filled

Core and valence electrons (II)

Separation between core and valence orbitals : the energy ...

$$E_{\text{KS}}\left[\left\{\psi_{i}\right\}\right] = \sum_{i} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int\frac{n(\mathbf{r}_{1})n(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2} + E_{xc}\left[n\right]$$

$$E_{\text{KS}}\left[\left\{\psi_{i}\right\}\right] = \sum_{i \in core}^{N_{core}} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n_{core}(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int\frac{n_{core}(\mathbf{r}_{1})n_{core}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \sum_{i \in val}^{N_{val}} \left\langle\psi_{i}\right| - \frac{1}{2}\nabla^{2}\left|\psi_{i}\right\rangle + \int V_{ext}(\mathbf{r})n_{val}(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int\frac{n_{val}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \int\frac{n_{core}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \int\frac{n_{core}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

$$+ \int\frac{n_{core}(\mathbf{r}_{1})n_{val}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

Skoltech

Removing core electrons (I)

From the previous construction : valence orbitals must still be orthogonal to core orbitals (=> oscillations, slope at the nucleus ...)

Pseudopotentials try to remove completely the core orbitals from the simulation

Problem with the number of nodes This is a strong modification of the system ...

Pseudopotentials confine the strong changes within a « cut-off radius »

Removing core electrons (II)

Going from $\left(-\frac{1}{2}\nabla^2 + v\right) |\psi_i\rangle = \varepsilon_i |\psi_i\rangle$

To
$$\left(-\frac{1}{2}\nabla^2 + v_{ps}\right) |\psi_{ps,i}\rangle = \varepsilon_{ps,i} |\psi_{ps,i}\rangle$$

Possible set of conditions (norm-conserving pseudopotentials) NCPP - Hamann D.R., Schlüter M., Chiang C, Phys.Rev.Lett. 43, 1494 (1979)

$$\varepsilon_{i} = \varepsilon_{ps,i}$$

$$\psi_{i}(\mathbf{r}) = \psi_{ps,i}(\mathbf{r}) \quad \text{for } \mathbf{r} > \mathbf{r}_{c}$$

$$\int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{i}(\mathbf{r})|^{2} d\mathbf{r} = \int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{ps,i}(\mathbf{r})|^{2} d\mathbf{r}$$

For the lowest angular momentum channels (s + p ... d ...f)

Generalisation : ultra-soft pseudopotentials (USPP), projector-augmented plane waves (PAW)

Warning : be it NCPP, USPP or PAW, regions within cut-off spheres of different atoms forming solid or molecule should not overlap. Uncontrolled approximation !

Skoltech

Example of pseudopotential

Forms of pseudopotentials

Must be a linear, hermitian operator

General form : $(\hat{V}_{ps}\psi)(\mathbf{r}) = \int V_{ps}^{kernel}(\mathbf{r},\mathbf{r'})\psi(\mathbf{r'})d\mathbf{r'}$

Spherically symmetric ! $V_{ps}^{kernel}(\mathbf{r},\mathbf{r'}) = V_{loc}(\mathbf{r})\delta(\mathbf{r}-\mathbf{r'}) + V_{nloc}(\mathbf{r},\mathbf{r'})$

Non-local part
$$V_{nloc}(\mathbf{r},\mathbf{r}') = \sum_{\ell m} Y^*_{\ell m}(\theta,\varphi) V_{\ell}(r,r') Y_{\ell m}(\theta',\varphi')$$

, Semi-local psp $V_{\ell}(r,r') = V_{\ell}(r)\delta(r-r')$ see Bachelet, Hamann and Schlüter, Phys.Rev.B 26, 4199 (1982)

Separable psp $V_{\ell}(r,r') = \xi_{\ell}^*(r) f_{\ell} \xi_{\ell}(r')$ Kleinman L., Bylander D.M., Phys.Rev.Lett. 48, 1425 (1982)

Skoltech

Ultrasoft Pseudopotentials and Projector-Augmented Waves (PAW)

Ultra-soft pseudopotentials : the idea

Problem with NC pseudopotentials : Norm-conservation limits the softness ! When orbitals without nodes (1s, 2p, 3d, 4f) treated as valence => small characteristic length energy cut-off large.

Idea (Vanderbilt, Phys. Rev. B 41, 7892 (1990))

Suppress norm-conservation condition :

- modify normalization, to keep correct scattering properties
- introduce charge density corrections.

For selected elements, can decrease number of PW/FFT Grid points by a factor of two or three, with even larger speed up. More difficult to implement than norm-conserving PPs.

Can be obtained as a particular case of PAW construction ...

Projector-Augmented Waves : the idea

Idea P. Blöchl Phys. Rev. B 50, 17953 (1994)

The true wavefunction and a well-behaving pseudowavefunction are linked by a linear transformation

More rigorous than USPP

USPP and PAW : common features

Generalized Schrödinger Eq., with overlap operator S.

$$\left[-\frac{\nabla^2}{2} + \mathbf{v}_{ps}\right] \boldsymbol{\psi}_{ps,i} = \boldsymbol{\varepsilon}_i \hat{S} \boldsymbol{\psi}_{ps,i}$$

Charge density of each state to be corrected for the missing norm.

Projector-Augmented Waves : the math

True wave-function Well-behaving pseudo-wavefunction Linked by a linear transformation

Physical quantities like computed in the pseudo representation

$$\Psi \\ \tilde{\Psi} \\ \Psi = \hat{T} \tilde{\Psi}$$

 $\begin{cases} \Psi \middle| \stackrel{A}{\tilde{\Psi}} \middle| \stackrel{\Psi}{\tilde{A}} \middle| \stackrel{\Psi}{\tilde{\Psi}} \rangle \\ \tilde{A} = T^{+} \hat{A} T \end{cases}$

with

Similarly, variational principle for total energy gives $\frac{\partial E[\hat{T}|\tilde{\Psi}\rangle]}{\partial\langle\tilde{\Psi}|} = \varepsilon \hat{T}^{+} \hat{T} |\tilde{\Psi}\rangle$

Equivalent to Kohn-Sham eq., for pseudowavefunctions. Search for ground state done in the pseudo space.

Transformation operator

Operator T has to modify the smooth pseudowavefunction in each atomic region, to give it the correct nodal structure. Identity + sum of atomic contributions $\Psi = \hat{T} \tilde{\Psi}$ with $\hat{T} = 1 + \sum_{R} \hat{S}_{R}$ (R=atomic site label) Choose : Partial waves $|\phi_i\rangle$ = basis set, solutions of the

Schrödinger Eq. for the isolated atoms within some cut-off radius $r_{c,R}$

Pseudo partial waves $\left| \tilde{\phi}_i \right\rangle$ = identical to the partial waves beyond the cut-off radius, but smoother inside

Define S such as :
$$|\phi_i\rangle = (1 + \hat{S}_R) |\tilde{\phi}_i\rangle$$

Representation of the wavefunctions

Warning : be it NCPP, USPP or PAW, regions within cut-off spheres of different atoms forming solid or molecule should not overlap. Uncontrolled approximation !

Skoltech

Wavefunctions, density, energy

represented by plane waves (might use other representations)

 $|\Psi_R^1\rangle$ and $|\tilde{\Psi}_R^1\rangle$ represented on a radial grid, centered on R, times spherical harmonics

Note : $\begin{cases} \text{Outside of the spheres,} & |\Psi_R^1\rangle = |\tilde{\Psi}_R^1\rangle \\ \text{Inside one sphere,} & \tilde{\Psi} = |\tilde{\Psi}_R^1\rangle & \left(=\sum_{i \in R} |\tilde{\phi}_i\rangle \langle \tilde{p}_i | \tilde{\Psi} \rangle\right) \end{cases}$

Density:

 $n(\mathbf{r}) = \widetilde{n}(\mathbf{r}) + \sum_{P} \left(n_R^1(\mathbf{r}) - \widetilde{n}_R^1(\mathbf{r}) \right)$

Energy:

$$E = \widetilde{E} + \sum_{R} \left(E_{R}^{1} - \widetilde{E}_{R}^{1} \right)$$

Skoltech

 $\tilde{\Psi}$

Approximations

- (1) Core electrons : usually treated in the frozen-core approximation, and treated on radial grid (spherical harmonics).
- (2) Finite PW basis set (same as PPs)
- (3) The partial wave expansion is truncated : only one or two partial wave(s), for each atom R, and each l,m channel

$$\sum_{i} |\tilde{\phi}_{i}\rangle \langle \tilde{p}_{i}| \neq 1$$

Inside one sphere, $\tilde{\Psi} = |\tilde{\Psi}_{R}^{1}\rangle \qquad \left(=\sum_{i \in R} |\tilde{\phi}_{i}\rangle \langle \tilde{p}_{i}|\tilde{\Psi}\rangle\right)$
is only approximately true !

 $\tilde{\Psi}$ contributes inside the atomic spheres, and corrects for the missing terms due to truncation of partial wave expansion

Other basis sets than plane waves ?

- (1) Without pseudopotentials : All-electron approach
 - Linear combination of atomic-centered functions

(e.g. FHI-AIMS)

- Augmented plane waves

(Linear APW approach e.g. WIEN2k, EXCITING, FLEUR)

- Wavelets

(e.g. BigDFT)

- Green's function based – Korringa, Kohn, Rostoker (KKR)

- ...

(2) With pseudopotentials

- Atomic-centered function (e.g. SIESTA)
- psinc functions, for O(N) scaling (e.g. ONETEP)

- ...

Advantages of PW+PP or PAW method ?

- Basis set does not depend on atomic coordinates : easy computation of forces as numerically exact derivatives of the total energy with respect to atomic coordinates (no Pulay forces). Easy structural optimisation, or MD. This leads also to Car-Parrinello technique.
- (2) Systematic way to complete the basis set
- For PW-PP : simple implementation
- For PW-PAW : can be a numerically accurate implementation of DFT, including properties related to cores ; usually faster than PW-PP

Disadvantages : cannot lead to Order(N) implementation, does not treat efficiently finite systems (vacuum !). Higher lying states (very high in energy) cannot be trusted...

Testing pseudopotentials

Comparing code/pseudopotential

Recently, large effort to improve uncertainty related to psps : « Delta-factor » collaboration Lejaeghere ... Cottenier, Science 351, aad3000 (2016) Specification of 71 elemental solids for different volumes.

More about pseudopotentials / PAW datasets

		AE							
		average <▲	Elk	exciting	FHI-aims/tier2	FLEUR	FPLO/T+F+S	RSPt	WIEN2k/acc
AE	Elk	0.6		0.3	0.3	0.6	1.0	0.9	0.3
	exciting	0.5	0.3		0.1	0.5	0.9	0.8	0.2
	FHI-aims/tier2	0.5	0.3	0.1		0.5	0.9	0.8	0.2
	FLEUR	0.6	0.6	0.5	0.5		0.8	0.6	0.4
	FPLO/T+F+s	0.9	1.0	0.9	0.9	0.8		0.9	0.9
	RSPt	0.8	0.9	0.8	0.8	0.6	0.9		0.8
	WIEN2k/acc	0.5	0.3	0.2	0.2	0.4	0.9	0.8	
PAW	GBRV12/ABINIT	0.9	0.9	0.8	0.8	0.9	1.3	1.1	0.8
	GPAW09/ABINIT	1.4	1.3	1.3	<u>1.3</u>	1.3	1 .7	1.5	1.3
	GPAW09/GPAW	1.6	1.5	1.5	1.5	1.5	1.8	1.7	1.5
	JTH02/ABINIT	0.6	0.6	0.6	0.6	0.6	0.9	0.7	0.5
	PSlib100/QE	0.9	0.9	0.8	0.8	0.8	1.3	1.1	0.8
	VASPGW2015/VASP	0.6	0.4	0.4	0.4	0.6	1.0	0.8	0.3

AMM lecture 16 April

More about pseudopotentials / PAW datasets

PAW

		GBRV12/ABINIT	GPAW06/GPAW	GPAW09/ABINIT	GPAW09/GPAW	JTH01/ABINIT	JTH02/ABINIT	PS1ib031/QE	PS1ib100/QE	VASP2007/VASP	VASP2012/VASP	VASPGW2015/VASP
	GBRV12/ABINIT		4.1	1.5	1.6	1.5	1.1	2.0	1.1	2.3	1.0	0.9
	GPAW06/GPAW	4.1		3.6	3.5	3.2	3.5	3.0	3.8	2.8	3.7	3.8
	GPAW09/ABINIT	1.5	3.6		0.6	1.5	1.4	2.0	1.5	2.4	1.4	1.3
	GPAW09/GPAW	1.6	3.5	0.6		1.6	1.5	2.1	1.6	2.5	1.6	1.4
~	JTH01/ABINIT	1.5	3.2	1.5	1.6		0.9	1.5	1.4	1.9	1.4	1.3
Ş	JTH02/ABINIT	1.1	3.5	1.4	1.5	0.9		1.4	0.9	1.9	0.7	0.7
PAW	PSlib031/QE	2.0	3.0	2.0	2.1	1.5	1.4		1.6	1.5	1.6	1.6
	PSlib100/QE	1.1	3.8	1.5	1.6	1.4	0.9	1.6		1.7	1.0	0.8
	VASP2007/VASP	2.3	2.8	2.4	2.5	1.9	1.9	1.5	1.7		1.8	2.1

More about pseudopotentials / PAW datasets

		<u> </u>	, i g AE						
		average < A >	Elk	exciting	FHI-aims/tier2	FLEUR	FPLO/T+F+S	RSPt	WIEN2k/acc
	FHI98pp/ABINIT	13.3	13.5	13.4	13.4	13.2	13.0	13.2	13.4
•	HGH/ABINIT	2.2	2.2	2.2	2.2	2.0	2.3	2.2	2.1
4	HGH-NLCC/BigDFT	1.1	1.1	1.1	1.1	1.0	1.2	1.1	1.0
NCPP	MBK2013/OpenMX	2.0	2.1	2.1	2.1	1.9	1.8	1.8	2.0
Z	ONCVPSP/ABINIT	0.7	0.7	0.7	0.7	0.6	1.0	0.8	0.6
	ONCVPSP(SG15)1/QE	1.4	1.4	1.3	1.3	1.3	1.6	1.5	1.3
	ONCVPSP(SG15)2/CASTEP		1.4	1.4	<u>1.4</u>	1.3	1.6	1.5	<u>1.4</u>

Improvement with time

	year	$\langle \Delta \rangle$ vs AE
JTH01/ABINIT	2013	1.1
JTH02/ABINIT	2014	0.6
Vdb/CASTEP	1998	6.5
OTFG7/CASTEP	2013	2.6
OTFG9/CASTEP	2015	0.7
GPAW06/GPAW	2010	3.6
GPAW09/GPAW	2012	1.6
PSlib031/QE	2013	1.7
PSlib100/QE	2013	1.0
VASP2007/VASP	2007	2.0
VASP2012/VASP	2012	0.8
VASPGW2015/VASP	2015	0.6

Now : JTH 1.0 => 0.4 meV

For norm-conserving Pseudo-dojo 0.1 => 0.6 meV

Updated information on : https://molmod.ugent.be/deltacodesdft

Skoltech

Going beyond basic properties:

Advanced Material Property lab

Properties from DFT+MBPT+...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

. . .

Familiarization with more than one software application : In this lab, ABINIT http://www.abinit.org instead of VASP Last release v9.0.2 Available freely (GPL, like Linux).

Target : more advanced properties than lattice parameter and basic electronic structure

- GW correction to the band gap (much better than standard DFT) Theory on 17 April
- Optical absorption
 - Theory on 21 April
- Phonon band structure
 - Theory on 23 April

Tutorial available on the Web.

Each student select a material, and a property among the three above.

Accurate description of the lab in a dedicated document (incl. planning).

Basic Documentation

Web site http://docs.abinit.org

- User's guides
- Installations notes
- List of input variables + description
- List of topics = a hub to input variables, files, tutorial, bibrefs
- > over 800 example input files
- >30 tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial
- + Forum Web site http://forum.abinit.org

ABINIT tutorial : layout + dependencies

Skoltech

Running ABINIT

Density Functional Theory calculations

In ABINIT ...

Representation of mathematical formalism with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions

=> wavefunctions characterized by a wavevector (k-vector)

PseudoPotentials (or Projector Augmented Waves – PAW)

Iterative techniques to solve the equations (Schrödinger equation ; DFT Self-consistency ; optimisation of atomic positions)

External files in a ABINIT run

Results :

log, main output, energy derivatives (_DDB), ... – text files density (_DEN), potential (_POT), wavefunctions (_WFK), ... – binary F90 files or similar files in netCDF (_DEN.nc, _POT.nc, _WFK.nc)

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

Pseudopotentials/PAW data in ABINIT

 Norm-conserving pseudos : pseudo-dojo approach Van Setten et al , Computer Physics Comm. 226, 39 (2018) https://www.pseudo-dojo.org

ABINIT : the pipeline and the driver

Skoltech

Main input file : input variable flexibility

- by default : atomic units (Bohr, electron mass, Planck's constant, Hartree) but eV, Angst, nm ... are recognized in the input file
- cell primitive vectors \rightarrow rprim
 - ... or angle (degrees) between primitive vectors \rightarrow angdeg
 - + scale cell vector lengths \rightarrow acell
 - + scale cartesian coordinates \rightarrow scalecart
- number of atoms \rightarrow natom
- reduced coordinates → xred (initial guess ...)
 - ... or cartesian coordinates \rightarrow xcart (in Bohr) / xangst (in Å)
- type of atoms \rightarrow typat
- space group \rightarrow spgroup + natrd
 - ... or number of symmetries \rightarrow nsym

+ symmetry operations \rightarrow symmetry thous

Example : cubic zirconium dioxide

Bilbao Crystallographic Server → Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Zr1	4a (0,0,0)	m-3m	(0.000000,0.000000,0.000000)	(0.000000,0.000000,0.000000) (0.000000,0.500000,0.500000) (0.500000,0.000000,0.500000) (0.500000,0.500000,0.000000)
02	8c (1/4,1/4,1/4)	-43m	(0.250000,0.250000,0.250000)	(0.250000,0.250000,0.250000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.750000) (0.250000,0.750000,0.750000) (0.250000,0.250000,0.750000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.250000)

Face-centered cubic, with three atoms per primitive cell

 $\begin{array}{l} Fm-3m\\ a=5.010\mbox{\AA}\\ b=5.010\mbox{\AA}\\ c=5.010\mbox{\AA}\\ \alpha=90.0^{\circ}\\ \beta=90.0^{\circ}\\ \gamma=90.0^{\circ} \end{array}$

Example : cubic zirconium dioxide

natom 3 acell 3*5.01 Angst NOTE "*" is a repeater rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 typat 1 2 2 xred 3*0.0 3*0.25 3*0.75 => symmetries are found automatically

OR

R natom 3 acell 3*5.01 Angst rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 typat 1 2 2 spgroup 225 natrd 2 xred 3*0.0 3*0.25 => the set of atoms is completed automatically

Primitive vectors in ABINIT (rprimd)

• $R_i(j) \rightarrow rprimd(j,i) = scalecart(j) \times rprim(j,i) \times acell(i)$

hexagonal

trigonal

Skoltech

a

 a_1

Basic 'files' file : delivers filenames

h2.in	Name of input file
h2.out	Name of main output file
h2i	'Root' name for possibly other input files
h2o	'Root' name for possibly other output files
h2	'Root' name for temporary files
hydrogen.hgh	Name for the pseudopotential file for atoms of type 1
oxygen.pspnc	Name for the pseudopotential file for atoms of type 2]
[92u.psp	Name for the pseudopotential file for atoms of type 3

Made of at least 6 lines (more if > 1 type of atoms) with one name/address specified on each of these lines.

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box

Characters after '#' or after '!' are comments, will be ignored.

Keywords followed by values. Order of keywords in file is not important.

# Definition of the unit cell acell 10 10 10 # Keyword "acell" refers to				
	# lengths of primitive vectors (default in Bohr)			
# Definition of the atom types				
ntypat 1	# Only one type of atom			
znucl 1	# Keyword "znucl" refers to atomic number of			
	<pre># possible type(s) of atom. Pseudopotential(s)</pre>			
	# mentioned in "filenames" file must correspond			
	# to type(s) of atom. Here, the only type is Hydrogen.			
# Definition of the atoms				
natom 2	# Two atoms			
typat 1 1	# Both are of type 1, that is, Hydrogen			
xcart	# This keyword indicate that location of the atoms			
	# will follow, one triplet of number for each atom			
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr			
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr			

A basic input file : dihydrogen (II)

Definition of planewave basis set

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

Definition of k-point grid

kptopt 0 # Enter k points manually

nkpt 1# Only one k point is needed for isolated system,# taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure

nstep 10# Maximal number of SCF cyclestoldfe 1.0d-6# Will stop when, twice in a row, the difference# between two consecutive evaluations of total energy# differs by less than toldfe (default in Hartree)diemac 2.0# Although this is not mandatory, it is worth to precondition the# SCF cycle. A model dielectric function, used as standard# preconditioner, is described in "dielng" input variable section.# Here, we follow prescriptions for molecules in a big box## After modifying the following section, one might need to ...

#%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

Number of planewaves

Number of plane waves = function of the kinetic energy cut-off ... not continuous

0

0

Ο

Ο

Ο

Ο

Ο

Ο

Discontinuities in energy and pressure

=> Energy (and pressure) also (discontinuous) functions of lattice parameter at fixed kinetic energy

Removing discontinuities (no need for Pulay stresses)

Skoltech

Convergence wrt to kinetic energy cutoff

AMM lecture 16 April

Reminder Brillouin zone, wavevectors and occupation numbers

From discrete states to Brillouin zone

Discrete summations over states :

Total kinetic energy
$$\sum_{n} \langle \psi_{n} | -\frac{1}{2} \nabla^{2} | \psi_{n} \rangle$$

Density
$$n(\mathbf{r}) = \sum_{n} \psi_{n}^{*}(\mathbf{r}) \psi_{n}(\mathbf{r})$$

In the periodic case : summation over energy bands + integration over the Brillouin zone

Total kinetic energy
$$\sum_{n} \frac{1}{\Omega_{0k}} \int_{\Omega_{0k}} f(\varepsilon_{F} - \varepsilon_{nk}) \langle \psi_{nk} | -\frac{1}{2} \nabla^{2} | \psi_{nk} \rangle dk$$

Density
$$n(\mathbf{r}) = \sum_{n} \frac{1}{\Omega_{0k}} \int_{\Omega_{0k}} f(\varepsilon_{F} - \varepsilon_{nk}) \psi_{nk}^{*}(\mathbf{r}) \psi_{nk}(\mathbf{r}) dk$$

How to treat
$$\frac{1}{\Omega_{ok}} \int_{\Omega_{ok}} X_{k} dk ?$$

Skoltech

Brillouin zone integration

Simple answer : Homogeneous grid (1D - 2D - 3D) and equal weights

Homogeneous sampling of the Brillouin zone

Brillouin zone integration

Theorem :

- If the integrand is periodic
 - the integrand is continuous + derivable at all orders $(C^{\infty}D^{\infty})$ {**k**} homogeneous grid (1D 2D 3D) and w_{**k**} all equal

Then exponential convergence, with respect to $\Delta \mathbf{k}$

- OK for semiconductors/insulators where the occupation number is independent of k within a band
- Convergence : one ought to test several grids with different $\Delta \mathbf{k}$
- Monkhorst & Pack grids (Phys. Rev. B 13, 5188 (1976)) $k_1 \ge k_2 \ge k_3$ points + simple cubic, FCC, BCC ...
- Other techniques ... (tetrahedron method)

BZ integration : Monkhorst-Pack grid

• Uniformly spaced grid of $n_{k1} \times n_{k2} \times n_{k3}$ points in the first Brillouin Zone [Monkhorst & Pack, Phys. Rev. B 13, 5188 (1976)]

ngkpt nk1 nk2 nk3

Unshifted and shifted grids

- k-points grid can be chosen to be shifted : not centered at Γ.
- Advantage : comparable accuracy can be obtained with fewer k-points in IBZ (especially for highly symmetric cases)

Combining grids with various shifts

• k-points grid with various shifts can also be combined.

combining unshifted and shifted by (1/2, 1/2)for $n_{k1} = n_{k2} = 3$

kptrlatt rl1_1 rl1_2 rl1_3 rl2_1 rl2_2 rl2_3 rl3_1 rl3_2 rl3_3

Irreducible wedge

- Using symmetries to avoid summing entire BZ :
- Restrict the sum to the Irreducible Brillouin zone (IBZ) provided that weights are adapted.

Treatment of metals (I)

Problem : T needed to recover the same convergence as for semiconductors is very high (>> 2000 K)

Skoltech

Treatment of metals (II)

Better technique : obtain $E(\sigma = 0)$ from total energy expression $E(\sigma)$ with modified occupation numbers, and σ similar to a temperature

$$E(\sigma) = E(\sigma = 0) + \alpha \sigma^2 + O(\sigma^3)$$
 with α small

or
$$E(\sigma) = E(\sigma = 0) + \alpha \sigma^n + O(\sigma^{n+1})$$
 with n>2

$$f_{n\mathbf{k}} (\varepsilon_{n\mathbf{k}}) = \underset{t=\frac{\varepsilon_{n\mathbf{k}}-\varepsilon_{F}}{\int}}{s} \tilde{\delta}(t) dt \quad [\text{ with } \int_{-\infty}^{\infty} \tilde{\delta}(t) dt = 1]$$

Convergence wrt k-points and smearing

AMM lecture 16 April

How many k points ? Smearing width ?

Rule of thumb ! Goal : lattice parameter converged better than 0.5 %

Semiconductors - Insulators# $\mathbf{k} \ge N_{atoms}$ 50 ... 500Metals# $\mathbf{k} \ge N_{atoms}$ 1000 ... 2000

 \triangle

Use symmetries ⇒ integration in the irreducible Brillouin zone

2D Example
$$grid 4 \times 4 = 16$$

 0
 3 points in the irreducible Brillouin Zone

Smearing : depends on the density of electronic states (DOS) at the Fermi level s-p Metal (Al, Na ...) ~ 0.04 Ha d Metal (Cu, Ag...) ~ 0.01 Ha <u>Magnetism needs small</u> σ

Skoltech