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Course content

Schedule: https://cms-lab.github.io/edu/AMM/Schedule.htm

We are here for you!

Adjusted/refined topics based on your interests

Discussion of your research projects

Final projects according to your interests



Course content: Prerequisites

1) Quantum mechanics

2) Basic solid state theory (periodic boundary conditions, Brillouin 
zones, k-points)

3) Basic electronic-structure concepts (many-body Schrödinger 
equation, Born-Oppenheimer approximation, density functional 
theory, Hartree-Fock approximation)

We will briefly review some of the background topics for you



Course content: What it is about

Materials modeling:

+ Interpretation of experiments at the atomic scale

+ Prediction of unexplored materials’ properties

Atomic structure Electronic structure

Goal: Teach advanced concepts and tools in materials modeling 
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No analytic solutions for more than two particles  need 
approximations!

Course content: What it is about



 The Born-Oppenheimer approximation has 
separated the nuclear degrees of freedom, but 
we are still left with a many-body problem, i.e.,
with the order of 1023 interacting particles.

 How to simplify the problem further?

Course content: What it is about



 The Hartree-Fock approximation

Course content: What it is about

No self-interaction, but also no correlation 

Φ



Course content: What it is about

Density functional theory: Hohenberg-Kohn theorem
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– many-body Hamiltonian

– many-body wave function

– total energy
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Standard approximations to               : Local density approximation 
(LDA), generalized gradient approximation (GGA), meta-GGA
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Φ(����, … , �� �� )

Correlation is included, but also self-interaction 



Course content: What it is about

What can we do?

experimental band gap (eV)
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Course content: What it is about

Advanced topics:

Hybrid functionals, many-body perturbation theory (GW, Bethe-
Salpeter equation)

Density functional perturbation theory (electron-phonon coupling, 
spectroscopy, electron transport) 

Excited state dynamics



Course content: What it is about

Other equally important aspects:

1) A DFT calculation corresponds to T = 0 K and p = 0 atm. We 
explain how to go beyond this approximation (molecular 
dynamics, ab initio atomistic thermodynamics, kinetic Monte 
Carlo)

2) Bridging materials gap (ab initio modeling versus real 
materials)  use data analysis and machine learning



Assignments and assessment

1) Homeworks: based on the lectures, multiple-choice or free question-and-
answer format. 

Assessment: number of correctly answered questions

2) Lab reports: based on computational labs.

Assessment: Task completion, understanding 

3) Progress reports on your final projects. 

Assessment: Quality of presentation, understanding of the subject

4) Final project (https://cms-lab.github.io/edu/AMM/FinalProject.htm). 

Assessment: Scientific quality, quality of presentation, answering questions



First homework: Introduce yourself

Homework assignment: 

https://cms-lab.github.io/edu/AMM/homeworks/Homework1.pdf

Due date: Friday 17.04 at 9:00 (presentations after lecture)



Office hours

No fixed office hours 

Simply send me and Christian an email if you have a question or 
want to discuss something, we will answer by email or arrange an 
online meeting 



Lecture 1: Advanced DFT for solids 1



DFT approximations: What is missing?

We do not know the exact exchange-correlation functional

but we can determine some of its properties!

Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)

LDA



Exact DFT functional properties: E(N)

 Fractional occupations

Ψ�, probability ��; Ψ�, probability ��; etc. - ensemble Γ

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)
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Exact DFT functional properties: E(N)
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Exact DFT functional properties: E(N)
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Fractional occupations

 Fractional occupations in Kohn-Sham formalism

.
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Fractional occupations
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 Dependence � � for an approximate functional:

.

Approximate functionals

Convex behavior 

ExactLDA/GGA



 Dependence � � for an approximate functional:

.

Approximate functionals

Convex

Exact

LDA/GGA

Hartree-Fock
Concave � = � �

Hartree-Fock is a functional 
within generalized Kohn-
Sham scheme: 

More “DFT-like”: Optimized 
effective potentials (local 
potentials that approximate 
the non-local HF exchange) 
- numerically complex and 
computationally expensive



 Connection between the self-interaction 
(delocalization) error (SIE) and the convex behavior

.

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

Dependence � � for 
1, 2, 3, and ∞
separated molecules

����/��� � is convex 
because of SIE

Approximate functionals



 Observable gap:

 Kohn-Sham gap: 

.
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Janak’s theorem

 Fractional occupations in Kohn-Sham formalism
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Janak’s theorem

 Fractional occupations in Kohn-Sham formalism

.

Janak, Phys. Rev. B 18, 7165 (1978)

�� �� , �� = ∑ ����� + �� � + ���[�]� � = ∑ �� �� �
�

�

���

���
= �� + ���� �� �

���(�) + ����
����
��(�)

��
� = �� =

���

���

from KS equations from stationary condition 
with respect to � �

∗

�� � =
�

�
∫
� � �(��)

����
������� −∫��� ∑

�� 

����
� � �

−
�

�
���� + ∫����

� ��

����
− ∑

�� 

����
� �� +

����

�� �
�� = ����



Janak’s theorem

 Fractional occupations in Kohn-Sham formalism
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 Observable gap:

 From Janak’s theorem and the exact functional 
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Band gap problem

 Derivative discontinuity
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 Generalized Kohn-Sham (GKS):
.

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

Band gap problem

Convex

Exact

LDA/GGA

Hartree-Fock
Concave



 Hartree-Fock is self-interaction free, but…
.

Brice Arnaud, Universit´e de Rennes, France

Band gap problem

Experimental band gap, eV
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 Hybrid functionals

.

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

� {�} = ���
�� + 1 − � ��

��� +
��
���, 0 < � ≤ 1

Idea: combine HF with 
GGA to reduce the self-
interaction error:

Band gap problem

Convex

Exact
LDA/GGA

Hartree-Fock
Concave

Approximate � � is not 
exactly straight and may 
have a different slope: 
some errors remain
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Hybrid functionals
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J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Hybrid functionals



 Hybrid functionals

.

����� = 0.25��
�� ��� + 0.75��

��� + ��
���

From: “Advanced Calculations for 
Defects in Materials: Electronic 
Structure Methods”, Alkauskas, 
Deák, Neugebauer, Pasquarello, 
Van de Walle (eds.), Willey-VCH 
(2011)

Hybrid functionals



 Hybrid functionals

.

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

Hybrid functionals



 Determine the best � by comparing to more 
accurate approaches

.

���� = 0.25��
��,�� � + 0.75��

���,��(�) + ��
���,�� � + ��

���

Tuning hybrids: A practical approach
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HSE formation energies for varying �: 
strong dependence for F+ and F2+!

Which � to use?

Tuning hybrids: A practical approach
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 Is � = �. �� always good?

.

Electron addition energy ���� =
� � + 1 − �(�) for the FeMg defect

Mg

O

Fe

Optimal � ≈ 0.6

� = 0.11 bohr��

(standard in 
HSE06)

There IS an � for which ����� = �����
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Tuning hybrids: A practical approach

Example: FeMg substitutional defects in MgO



 Hybrid functionals

.

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

Hybrid functionals

Skone, Govoni, and Galli, Phys. Rev. B 89, 195112 (2014)

Maier, Arbuznikov, and Kaupp, WIREs Comput Mol Sci. 9, 1 (2019)



Other approaches: Self-interaction correction

Hybrids are a consistent way to improve accuracy, but they are 
computationally expensive (30-40 times PBE)

 Perdew-Zunger self-interaction correction:

������� = ���� −
1

2
� ��������

��� � ��� ��

� − ��
+ ���[���]

��

where ��� are single-orbital densities 

+ exact for any one-electron density

+ fast

- depends on the choice of orbitals representing the density

- not good for many-electron densities in general

Perdew and Zunger, Phys. Rev. B 23, 5048 (1981) 



Other approaches: Self-interaction correction

charged H2 molecule charged carbon atom

Aquino, Shinde, and Wong, J. Comput. Chem. 41, 1200 (2020)

Locally scaled SIC: reduce SIC in many-electron regions 

Vydrov and Scuseria, J. Chem. Phys. 124, 094108 (2006)



Other approaches: DFA+U

Transition-metal atoms with LOCALIZED orbitals (d, f)

Self-interaction error  dramatic effects on electronic structure

Idea: Correct ON-SITE errors (locally on each atom) only 

How?



Other approaches: DFA+U

Idea: Penalize fractional occupations of localized atomic orbitals

1e (1-δ)e δe

isolated ion

ion in solid

E. Pavarini, E. Koch, F. Anders, and 
M. Jarrell
Correlated Electrons: From 
Models to Materials
Modeling and Simulation Vol. 2
Forschungszentrum Julich, 2012, 
ISBN 978-3-89336-796-2 



Other approaches: DFA+U

Idea: Penalize fractional occupations of localized atomic orbitals

Electron-electron interaction of localized electrons in mean-
field approximation (Hartree-Fock)  concave

Use as penalty!

E. Pavarini, E. Koch, F. Anders, and 
M. Jarrell
Correlated Electrons: From 
Models to Materials
Modeling and Simulation Vol. 2
Forschungszentrum Julich, 2012, 
ISBN 978-3-89336-796-2 



Other approaches: DFA+U

Hartree-Fock energy of localized electrons in a solid: 
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2
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� = ∑ ��� �� �� �� ���� -- occupation matrix

atomic orbitals KS states

occupation of 
KS states

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995) 



Other approaches: DFA+U

Hartree-Fock energy of localized electrons in a solid: 
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� }
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atomic orbitals KS states

occupation of 
KS states

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995) 

� - screened Coulomb interaction (due to other atomic orbitals s,p,...)



Other approaches: DFA+U

Hartree-Fock energy of localized electrons in a solid: 
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Other approaches: DFA+U
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Other approaches: DFA+U

Penalty for fractional occupations:
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Other approaches: DFA+U

������ = ���� + �� = ���� +
� − �

2
����

�

��

− � ����
� ����

�

����

Notes:

• � − � can be considered as an effective �

• First derivations were not rotationally invariant

• One can go beyond mean-field, then need both � and �

• ���� ����
�  �� ��� is called double-counting term

• Depends on the choice of atomic basis ��

• � depends on atom, orbital (d, f), atom environment

How to determine �?



Other approaches: DFA+U

������ = ���� + �� = ���� +
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�
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How to determine �?

• Compare DFA+U with experiment (band gap, structure) - often 
unavailable

• Compare DFA+U with accurate methods (GW) - expensive

• Ensure linear E(N) - done using linear-response DFT

• From constrained random-phase approximation calculations -
expensive, complex formalism

� depends on atom, orbital (d, f), atom environment

Pavarini, Koch, Vollhardt, and Lichtenstein, The LDA+DMFT approach to strongly correlated 
materials Modeling and Simulation Vol. 1 Forschungszentrum Juelich, 2011, ISBN 978-3-89336-
734-4



Take-home messages:

Know what you are doing!

Non-linearity of E(N)  DFA failures

Functional development - active field of research (SIC, DFA+U, local 

hybrids, � =
�

��
, meta-GGA)


