Advanced Materials Modeling

Center for Energy Science and Technology (CEST) Skolkovo Institute of Science and Technology Moscow, Russia

Introduction

Instructors and teaching assistant

Prof. Andriy Zhugayevych (Skoltech)

Prof. Xavier Gonze (UCLouvain Belgium, Skoltech)

Prof. Alexander Shapeev (Skoltech)

Prof. Sergei Tretiak (Los Alamos National Lab, Skoltech)

Prof. Sergey Levchenko - lead instructor

TA: Dr. Christian Tantardini (Skoltech)

Course content

Schedule: https://cms-lab.github.io/edu/AMM/Schedule.htm

We are here for you! Adjusted/refined topics based on your interests Discussion of your research projects Final projects according to your interests

Course content: Prerequisites

- 1) Quantum mechanics
- 2) Basic solid state theory (periodic boundary conditions, Brillouin zones, k-points)
- 3) Basic electronic-structure concepts (many-body Schrödinger equation, Born-Oppenheimer approximation, density functional theory, Hartree-Fock approximation)

We will briefly review some of the background topics for you

Goal: Teach advanced concepts and tools in materials modeling

Atomic structure

Electronic structure

Materials modeling:

- + Interpretation of experiments at the atomic scale
- + Prediction of unexplored materials' properties

$$i\frac{\partial\Psi}{\partial t} = \left(-\frac{1}{2}\sum_{j}\frac{\partial^{2}}{\partial r_{j}^{2}} + \frac{1}{2}\sum_{j\neq k}\frac{Q_{j}Q_{k}}{|r_{j} - r_{k}|} + V^{\text{ext}}(\{r_{j}\}, t)\right)\Psi$$

non-relativistic Schrödinger equation

$$\Psi(\{\mathbf{r}_i\}, \{\sigma_i\}, t)$$
 – wave function, depends on spatial (\mathbf{r}_i)
and spin (σ_i) coordinates of ALL particles in the
system, and time *t*

No analytic solutions for more than two particles \rightarrow need approximations!

The Born-Oppenheimer approximation has separated the nuclear degrees of freedom, but we are still left with a many-body problem, *i.e.*, with the order of 10²³ interacting particles.

$$\sum_{i=1}^{N} \left[-\frac{1}{2} \nabla_{i}^{2} + \frac{1}{2} \sum_{j \neq i}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} + \sum_{l_{0}}^{M} \frac{Z_{l}}{|\mathbf{r}_{i} - \mathbf{R}_{l_{0}}|} \right] \Phi(\{\mathbf{r}_{i}\}) = E^{e} \Phi(\{\mathbf{r}_{i}\})$$

How to simplify the problem further?

The Hartree-Fock approximation

Slater determinant fulfills the Pauli principle

$$\Phi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \frac{1}{N!} \begin{vmatrix} \psi_1(\mathbf{r}_1) & \psi_2(\mathbf{r}_1) & \dots & \psi_N(\mathbf{r}_1) \\ \psi_1(\mathbf{r}_2) & \psi_2(\mathbf{r}_2) & \dots & \psi_N(\mathbf{r}_2) \\ \dots & & \\ \psi_1(\mathbf{r}_N) & \psi_2(\mathbf{r}_N) & \dots & \psi_N(\mathbf{r}_N) \end{vmatrix}$$

Hartree-Fock equation

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \nabla_i^2 + V_{ext}(\mathbf{r}) \end{bmatrix} \psi_i(\mathbf{r}) + e^2 \sum_j \int \frac{\psi_j^*(\mathbf{r}')\psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \psi_i(\mathbf{r}) \\ - e^2 \sum_j \int \frac{\psi_j^*(\mathbf{r}')\psi_i(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \psi_j(\mathbf{r}) = E_i \psi_i(\mathbf{r})$$

No self-interaction, but also no correlation

Density functional theory: Hohenberg-Kohn theorem

$$n(\mathbf{r}) \xrightarrow{\hat{H}} - \text{many-body Hamiltonian}$$

$$n(\mathbf{r}) \xrightarrow{\Phi(r_1 \sigma_1, \dots, r_N \sigma_N) - \text{many-body wave function}} E_{\text{tot}} - \text{total energy}$$

$$E_{\text{tot}} = T[n] - \sum_{I=1}^M Z_I \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d^3r + \frac{1}{2} \sum_{I=1}^M \sum_{J=1}^M \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r d^3r' + E_{\text{XC}}[n]$$

Standard approximations to $E_{\rm XC}[n]$: Local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA

Correlation is included, but also self-interaction

What can we do?

Advanced topics:

Hybrid functionals, many-body perturbation theory (GW, Bethe-Salpeter equation)

Density functional perturbation theory (electron-phonon coupling, spectroscopy, electron transport)

Excited state dynamics

Other equally important aspects:

- A DFT calculation corresponds to T = 0 K and p = 0 atm. We explain how to go beyond this approximation (molecular dynamics, *ab initio* atomistic thermodynamics, kinetic Monte Carlo)
- 2) Bridging materials gap (*ab initio* modeling versus real materials) → use data analysis and machine learning

Assignments and assessment

1) Homeworks: based on the lectures, multiple-choice or free question-andanswer format.

Assessment: number of correctly answered questions

2) Lab reports: based on computational labs.

Assessment: Task completion, understanding

3) Progress reports on your final projects.

Assessment: Quality of presentation, understanding of the subject

4) Final project (https://cms-lab.github.io/edu/AMM/FinalProject.htm). Assessment: Scientific quality, quality of presentation, answering questions

First homework: Introduce yourself

Homework assignment:

https://cms-lab.github.io/edu/AMM/homeworks/Homework1.pdf

- 1. Give a 10-min presentation of your research project most relevant to the course using the following plan:
 - Introduce yourself (1 min)
 - Why are you interested in the course (1 min)
 - Present your most relevant research projects (3-5 min)
 - Speculate on possible final project (1-3 min)
- 2. Submit a 1-page proposal of your final project.

3. Look at the list of lectures (https://cms-lab.github.io/edu/AMM/Schedule.htm) and mark the most interesting from your point of view.

4. Write down three extra topics you would like to hear a lecture about.

Due date: Friday 17.04 at 9:00 (presentations after lecture)

Office hours

No fixed office hours

Simply send me and Christian an email if you have a question or want to discuss something, we will answer by email or arrange an online meeting

Lecture 1: Advanced DFT for solids 1

DFT approximations: What is missing?

Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)

We do not know the exact exchange-correlation functional but we can determine some of its properties!

Fractional occupations

Time average \rightarrow statistical mixture of *pure* states:

 $Ψ_1$, probability p_1 ; $Ψ_2$, probability p_2 ; etc. - ensemble Γ

Fractional occupations

Time average \rightarrow statistical mixture of *pure* states:

$$\begin{split} \Psi_1, \text{ probability } p_1; \Psi_2, \text{ probability } p_2; \text{ etc. - ensemble } \Gamma \\ \left< \hat{O} \right>_{\Gamma} &= \sum_i p_i \left< \Psi_i \middle| \hat{O} \middle| \Psi_i \right> \text{ - for any operator } \hat{O} \\ E[n] &= \min_{\Gamma \to n} \left< \hat{T} + \hat{V}_{ee} + \hat{V}_{ext} + \hat{V}_{xc} \right>_{\Gamma} \text{ [minimize over all } \Gamma \text{ giving} \\ & \text{ the same } n(\boldsymbol{r}) \text{]} \end{split}$$

Fractional occupations

Time average \rightarrow statistical mixture of *pure* states:

$$\begin{split} \Psi_1, \text{ probability } p_1; \Psi_2, \text{ probability } p_2; \text{ etc. - ensemble } \Gamma \\ \left< \hat{O} \right>_{\Gamma} &= \sum_i p_i \left< \Psi_i \middle| \hat{O} \middle| \Psi_i \right> \text{ - for any operator } \hat{O} \\ E[n] &= \min_{\Gamma \to n} \left< \hat{T} + \hat{V}_{ee} + \hat{V}_{ext} + \hat{V}_{xc} \right>_{\Gamma} \text{ [minimize over all } \Gamma \text{ giving} \\ & \text{ the same } n(\boldsymbol{r}) \text{]} \end{split}$$

Fractional number of electrons - ensemble of pure states with different integer charges:

 $p_1M + p_2(M-1) + p_3(M+1) + \dots = M + \omega, 0 < \omega < 1,$ $E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$

Fractional occupations

 $p_1M + p_2(M - 1) + p_3(M + 1) + \dots = M + \omega, 0 < \omega < 1,$ $E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$

Fractional occupations

 $p_1M + p_2(M - 1) + p_3(M + 1) + \dots = M + \omega, 0 < \omega < 1,$ $E[n] = p_1E_M + p_2E_{M-1} + p_3E_{M+1} + \dots, \qquad p_1 + p_2 + \dots = 1$

The exact energy changes piece-wise linearly with N

Fractional occupations in Kohn-Sham formalism

$$n(\mathbf{r}) = \sum_{i} |\psi_{i}(\mathbf{r})|^{2}$$

$$E_{\text{KS}}(\{\psi_{i}\}, \{f_{i}\}) = \sum_{i} t_{i} + E_{\text{C}}[n] + E_{\text{XC}}[n],$$
kinetic energy Coulomb energy exchange-correlation
$$t_{i} = -\frac{1}{2} \langle \psi_{i} | \nabla^{2} | \psi_{i} \rangle \qquad \frac{1}{2} \int \frac{n(r)n(r')}{|r-r'|} d^{3}r d^{3}r' \qquad \text{energy}$$

$$-\int d^{3}r \sum_{J} \frac{Z_{J}}{|r-R_{J}|} n(\mathbf{r})$$

Fractional occupations in Kohn-Sham formalism

 $n(\mathbf{r}) = \sum_i |\psi_i(\mathbf{r})|^2$

$$E_{\mathrm{KS}}(\{\psi_i\},\{f_i\}) = \sum_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n], \ t_i = -\frac{1}{2} \langle \psi_i | \nabla^2 | \psi_i \rangle$$

Let us define:

 $n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2}, \sum_{i=1}^{\infty} f_{i} = N, 0 \le f_{i} \le 1$ $\tilde{E}(\{\psi_{i}\}, \{f_{i}\}) = \sum_{i} f_{i} t_{i} + E_{C}[n] + E_{XC}[n]$

Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\mathbf{r}) = \sum_i \frac{f_i}{f_i} |\psi_i(\mathbf{r})|^2$$
, $\sum_{i=1}^{\infty} f_i = N, 0 \le f_i \le 1$

 $\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n]$

Lagrangian:

 $Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$

 $\min_{\psi_i, f_i} Q \to n, \tilde{E}[n], \psi_i$

Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\mathbf{r}) = \sum_i \frac{f_i}{f_i} |\psi_i(\mathbf{r})|^2$$
 , $\sum_{i=1}^{\infty} f_i = N, 0 \le f_i \le 1$

 $\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n]$

Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i \left(\int |\psi_i|^2 d\mathbf{r} - 1\right) - \mu(\sum_i f_i - N),$$

$$\frac{\delta Q}{\delta \psi_i^*} = 0 \rightarrow \text{Kohn-Sham equations by choosing } \lambda_i = f_i \varepsilon_i$$

$$-\frac{1}{2} \nabla^2 \psi_i + \left(\int d^3 r' \frac{n(r')}{|r-r'|} - \sum_J \frac{Z_J}{|r-R_J|}\right) \psi_i + \frac{\delta E_{\text{XC}}}{\delta n(r)} \psi_i = \varepsilon_i \psi_i$$

Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\mathbf{r}) = \sum_i \frac{f_i}{f_i} |\psi_i(\mathbf{r})|^2$$
, $\sum_{i=1}^{\infty} f_i = N, 0 \le f_i \le 1$

 $\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n]$

Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i (\int |\psi_i|^2 d\mathbf{r} - 1) - \mu(\sum_i f_i - N),$$

$$\frac{\partial Q}{\partial f_i} = 0 \Rightarrow \text{set } f_i = \cos^2 \theta_i \Rightarrow \frac{\partial Q}{\partial \theta_i} = -\left(\frac{\partial \tilde{E}}{\partial f_i} - \mu\right) \sin 2\theta_i = 0$$
$$\frac{\partial \tilde{E}}{\partial f_i} = \mu, 0 \le f_i \le 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 0$$

Approximate functionals

Dependence E(N) for an approximate functional:

Approximate functionals

Dependence E(N) for an approximate functional:

Hartree-Fock is a functional within generalized Kohn-Sham scheme: $E = E[\{\psi\}]$

More "DFT-like": Optimized effective potentials (local potentials that approximate the non-local HF exchange) - numerically complex and computationally expensive

Approximate functionals

Connection between the self-interaction (delocalization) error (SIE) and the convex behavior

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

Observable gap:

$$E_{gap}^{obs} = (E(M+1) - E(M)) - (E(M) - E(M-1))$$

Kohn-Sham gap:

$$E_{gap}^{KS} = \varepsilon_{LUMO}^{M} - \varepsilon_{HOMO}^{M}$$

Are they the same?

Fractional occupations in Kohn-Sham formalism

Let us define:

$$n(\mathbf{r}) = \sum_i \frac{f_i}{f_i} |\psi_i(\mathbf{r})|^2$$
, $\sum_{i=1}^{\infty} f_i = N, 0 \le f_i \le 1$

 $\tilde{E}(\{\psi_i\},\{f_i\}) = \sum_i f_i t_i + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n]$

Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i \left(\int |\psi_i|^2 d\mathbf{r} - 1\right) - \mu(\sum_i f_i - N),$$

$$\frac{\partial Q}{\partial f_i} = 0 \Rightarrow \text{set } f_i = \cos^2 \theta_i \Rightarrow \frac{\partial Q}{\partial \theta_i} = -\left(\frac{\partial \tilde{E}}{\partial f_i} - \mu\right) \sin 2\theta_i = 0$$
$$\frac{\partial \tilde{E}}{\partial f_i} = \mu, 0 \le f_i \le 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 1, \qquad \frac{\partial \tilde{E}}{\partial f_i} \ne \mu, f_i = 0$$

Fractional occupations in Kohn-Sham formalism

Derivative w.r.t. f:

 $n(\mathbf{r}) = \sum_{i} \mathbf{f}_{i} |\psi_{i}(\mathbf{r})|^{2} \qquad \tilde{E}(\{\psi_{i}\}, \{f_{i}\}) = \sum_{i} \mathbf{f}_{i} t_{i} + E_{\mathrm{C}}[n] + E_{\mathrm{XC}}[n]$

$$E_{C}[n] = \frac{1}{2} \int \frac{n(r)n(r')}{|r-r'|} d^{3}r d^{3}r' - \int d^{3}r \sum_{J} \frac{Z_{J}}{|r-R_{J}|} n(r)$$

$$-\frac{1}{2} \nabla^{2} \psi_{i} + \left(\int d^{3}r' \frac{n(r')}{|r-r'|} - \sum_{J} \frac{Z_{J}}{|r-R_{J}|} \right) \psi_{i} + \frac{\delta E_{\text{XC}}}{\delta n(r)} \psi_{i} = \varepsilon_{i} \psi_{i}$$

$$\frac{\partial \tilde{E}}{\partial f_{i}} = t_{i} + \int d^{3}r |\psi_{i}(r)|^{2} V_{C}(r) + \int d^{3}r \frac{\delta E_{\text{XC}}}{\delta n(r)} |\psi_{i}|^{2} = \varepsilon_{i} = \frac{d\tilde{E}}{df_{i}}$$

from KS equations from stationary condition with respect to ψ_{i}^{*}

Fractional occupations in Kohn-Sham formalism Lagrangian:

$$Q[\{\psi_i\},\{f_i\}] = \tilde{E}(\{\psi_i\},\{f_i\}) + \sum_i \lambda_i \left(\int |\psi_i|^2 d\mathbf{r} - 1\right) - \mu(\sum_i f_i - N),$$

$$\frac{\partial Q}{\partial f_i} = 0 \rightarrow \text{set } f_i = \cos^2 \theta_i \rightarrow \frac{\partial Q}{\partial \theta_i} = -(\varepsilon_i - \mu) \sin 2\theta_i = 0$$

Three cases: $\begin{aligned} \varepsilon_i &= \mu, 0 \leq f_i \leq 1 \\ \varepsilon_i &\neq \mu, f_i = 1 \\ \varepsilon_i &\neq \mu, f_i = 0 \end{aligned}$

Note: There can be additional constraints on f_i (electronic smearing for metals, finite temperature)

Fractional occupations in Kohn-Sham formalism

Janak's theorem:

$$\frac{dE[n]}{df_i} = \varepsilon_i$$

Also: E[n] is minimized when the fractional occupation is in ε_{HOMO} , and

$$\left. \frac{dE[n]}{dN} \right|_{M-\delta} = \frac{dE[n]}{df_{HOMO}} = \varepsilon_{HOMO} = \mu(M-\delta)$$

From the piece-wise linear behavior of the exact functional $\rightarrow \varepsilon_{HOMO}(M - \delta) = const$ for $0 < \delta < 1$ for exact KS potential (IP theorem)

What's up with the band gap?

Observable gap:

 $E_{gap}^{obs} = \left(E(M+1) - E(M)\right) - \left(E(M) - E(M-1)\right)$

From Janak's theorem and the exact functional condition:

$$E(M + 1) - E(M) = \int_0^1 \varepsilon_{M+1}(f) df = \varepsilon_{M+1}^{M+1} = \varepsilon_{HOMO}^{M+1}$$
$$E(M) - E(M - 1) = \int_0^1 \varepsilon_M(f) df = \varepsilon_M^M = \varepsilon_{HOMO}^M$$
$$\mathbf{I}$$
$$E_{gap}^{obs} = \varepsilon_{HOMO}^{M+1} - \varepsilon_{HOMO}^M$$
$$\mathbf{BUT!}$$
$$E_{gap}^{KS} = \varepsilon_{LUMO}^M - \varepsilon_{HOMO}^M$$

Derivative discontinuity

$$E_{gap}^{obs} - E_{gap}^{KS} = \varepsilon_{HOMO}^{M+1} - \varepsilon_{LUMO}^{M} = \frac{\delta E_{XC}[n]}{\delta n(\mathbf{r})} \bigg|_{M+\delta} - \frac{\delta E_{XC}[n]}{\delta n(\mathbf{r})}\bigg|_{M-\delta}$$

For the exact functional, the KS gap is not the same as the observable gap!

Thus, there are TWO problems:

1) non-straight-line behavior of the total energy with number of electrons for approximate functionals 2) $E_{gap}^{obs} \neq E_{gap}^{KS}$ for exact functional, and we do not know how large the difference is

Observation: improving E(N) behavior improves the KS gaps compared to experiment

Generalized Kohn-Sham (GKS):

Hartree-Fock "overcorrects" the discontinuity (correlation part is missing)

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

□ Hartree-Fock is self-interaction free, but...

Brice Arnaud, Universit'e de Rennes, France

Hybrid functionals

Idea: combine HF with GGA to reduce the selfinteraction error:

$$\begin{split} E[\{\psi\}] &= \alpha E_X^{HF} + (1-\alpha) E_X^{GGA} + \\ E_C^{GGA}, \ 0 < \alpha \le 1 \end{split}$$

Approximate E(N) is not exactly straight and may have a different slope: some errors remain

Mori-Sánchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)

□ Hybrid functionals $E = \alpha E_X^{HF} + (1 - \alpha) E_X^{LDA/GGA} + E_C^{LDA/GGA}$

The mixing parameter α depends on the choice of (semi)local exchange/correlation

 $E^{PBE0} = 0.25E_X^{HF}(\{\psi^{KS}\}) + 0.75E_X^{PBE} + E_C^{PBE}$ (choice of α is based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

□ Hybrid functionals $E = \alpha E_X^{HF} + (1 - \alpha) E_X^{LDA/GGA} + E_C^{LDA/GGA}$

The mixing parameter α depends on the choice of (semi)local exchange/correlation

 $E^{PBE0} = 0.25E_X^{HF}(\{\psi^{KS}\}) + 0.75E_X^{PBE} + E_C^{PBE}$ (choice of α is based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996) There can be other parameters

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$
$$\frac{1}{r} = SR_{\omega}(r) + LR_{\omega}(r) = \frac{\operatorname{erfc}(\omega r)}{r} + \frac{1 - \operatorname{erfc}(\omega r)}{r}$$

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

Hybrid functionals

 $E^{PBE0} = 0.25E_X^{HF}(\{\psi^{KS}\}) + 0.75E_X^{PBE} + E_C^{PBE}$

From: "Advanced Calculations for Defects in Materials: Electronic Structure Methods", Alkauskas, Deák, Neugebauer, Pasquarello, Van de Walle (eds.), Willey-VCH (2011)

Hybrid functionals

"An ideal hybrid would be sophisticated enough to optimize n [SVL: $\alpha = 1/n$] for each system and property..."

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?

Determine the best α by comparing to more accurate approaches

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

HSE formation energies for varying α : strong dependence for F⁺ and F²⁺!

Which α to use?

Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

Request:

Ionization energies with opt-HSE and with G_0W_0 opt-HSE should agree

0 $q \rightarrow q^{+1}$ w. r. t. VBM (eV) -2 -4 -6 9=0, ASCF From total energy differences -8 0.2 0.8 0.4 0.6 0 1 α

calculated using an Mg₆O₉ embedded cluster

Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

Request:

Ionization energies with opt-HSE and with G_0W_0 opt-HSE should agree

calculated using an Mg₆O₉ embedded cluster

\Box Determine the best α

$$E^{HSE} = 0.25E_X^{HF,SR}(\omega) + 0.75E_X^{PBE,SR}(\omega) + E_X^{PBE,LR}(\omega) + E_C^{PBE}$$

Request:

Ionization energies with opt-HSE and with G_0W_0 opt-HSE should agree

calculated using an Mg₆O₉ embedded cluster

Hybrid functionals

"An ideal hybrid would be sophisticated enough to optimize n [SVL: $\alpha = 1/n$] for each system and property..."

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?

1) $\alpha = 1/\varepsilon_{\infty}$ (self-consistent or not)

Skone, Govoni, and Galli, Phys. Rev. B 89, 195112 (2014)

2) $\alpha \rightarrow \alpha(r)$ - local hybrids

Maier, Arbuznikov, and Kaupp, WIREs Comput Mol Sci. 9, 1 (2019)

Other approaches: Self-interaction correction

Hybrids are a consistent way to improve accuracy, but they are computationally expensive (30-40 times PBE)

Perdew-Zunger self-interaction correction:

$$E^{PZ-SIC} = E^{DFA} - \frac{1}{2} \sum_{i\sigma} \left(\int d^3 r d^3 r' \frac{n_{i\sigma}(\mathbf{r}) n_{i\sigma}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{XC}[n_{i\sigma}] \right)$$

where $n_{i\sigma}$ are single-orbital densities

Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

+ exact for any one-electron density

+ fast

- depends on the choice of orbitals representing the density
- not good for many-electron densities in general

Other approaches: Self-interaction correction

charged H₂ molecule

charged carbon atom

Aquino, Shinde, and Wong, J. Comput. Chem. 41, 1200 (2020)

Locally scaled SIC: reduce SIC in many-electron regions

Vydrov and Scuseria, J. Chem. Phys. 124, 094108 (2006)

Transition-metal atoms with LOCALIZED orbitals (d, f)

Self-interaction error \rightarrow dramatic effects on electronic structure

Idea: Correct ON-SITE errors (locally on each atom) only

How?

Idea: Penalize fractional occupations of localized atomic orbitals

Idea: Penalize fractional occupations of localized atomic orbitals

Electron-electron interaction of localized electrons in meanfield approximation (Hartree-Fock) → concave

Hartree-Fock energy of localized electrons in a solid:

$$E^{loc} = \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n_{mm'}^{\sigma} n_{m''m'''}^{\sigma} + (\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m''} \rangle) n_{mm'}^{\sigma} n_{m''m'''}^{\sigma} \}$$

$$n_{mm'}^{\sigma} = \sum_i f_{i\sigma} \langle \phi_m | \psi_i \rangle \langle \psi_i | \phi_{m'} \rangle - \text{occupation matrix}$$

$$atomic \text{ orbitals} \quad \text{KS states}$$
occupation of KS states

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995)

Hartree-Fock energy of localized electrons in a solid:

$$E^{loc} = \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n_{mm'}^{\sigma} n_{m''m'''}^{\sigma} + (\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle) n_{mm'}^{\sigma} n_{m''m'''}^{\sigma} \}$$

$$n_{mm'}^{\sigma} = \sum_i f_{i\sigma} \langle \phi_m | \psi_i \rangle \langle \psi_i | \phi_{m'} \rangle - \text{occupation matrix}$$

$$atomic \text{ orbitals} \quad \text{KS states}$$
Deccupation of KS states

V - screened Coulomb interaction (due to other atomic orbitals s,p,...)

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995)

Hartree-Fock energy of localized electrons in a solid:

$$E^{loc} = \frac{1}{2} \sum_{\{m\}\sigma} \{ \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle n_{mm''}^{\sigma} n_{m'm'''}^{\sigma} + (\langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle) n_{mm''}^{\sigma} n_{m'm'''}^{\sigma} \}$$

$$n_{mm'}^{\sigma} = \sum_i f_{i\sigma} \langle \phi_m | \psi_i \rangle \langle \psi_i | \phi_{m'} \rangle - \text{occupation matrix}$$

$$atomic \text{ orbitals} \quad \text{KS states}$$
occupation of KS states

 $\begin{aligned} \textbf{Approximating} \quad & \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle \approx U \delta_{mm''} \delta_{m'm'''} \\ & \langle \phi_m \phi_{m'} | V | \phi_{m''} \phi_{m'''} \rangle - \langle \phi_m \phi_{m'} | V | \phi_{m'''} \phi_{m''} \rangle \approx (U - J) \delta_{mm'''} \delta_{m'm''} \\ & \longrightarrow \quad E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{ U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U - J) n_{mm'}^{\sigma} n_{m'm}^{\sigma} \} \end{aligned}$

$$E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{Un_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U-J)n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U-J)n_{mm'}^{\sigma} n_{m'm}^{\sigma} \}$$

Hubbard-like parameter ($U \sum_{i} \widehat{n}_{i}^{\uparrow} \widehat{n}_{i}^{\downarrow}$)

Penalty for fractional occupations:

$$\Delta E = E^{loc} \left(n_{mm'}^{\sigma} \text{ in solid} \right) - E^{loc} \left(n_{mm'}^{\sigma} \text{ in ion} \right)$$
$$= \frac{1}{2} \sum_{\{m\}\sigma} \left\{ U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} \right\} - \frac{(U - J)}{2} \sum_{m\sigma} n_{mm}^{\sigma}$$

$$E^{loc} \approx \frac{1}{2} \sum_{\{m\}\sigma} \{Un_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U-J)n_{mm}^{\sigma} n_{m'm'}^{\sigma} - (U-J)n_{mm'}^{\sigma} n_{m'm}^{\sigma} \}$$

Hubbard-like parameter ($U \sum_{i} \widehat{n}_{i}^{\uparrow} \widehat{n}_{i}^{\downarrow}$)

Penalty for fractional occupations:

$$\Delta E = E^{loc} \left(n_{mm'}^{\sigma} \text{ in solid} \right) - E^{loc} \left(n_{mm'}^{\sigma} \text{ in ion} \right)$$

$$= \frac{1}{2} \sum_{\{m\}\sigma} \left\{ U n_{mm}^{\sigma} n_{m'm'}^{-\sigma} + (U - J) n_{mm}^{\sigma} n_{m'm'}^{\sigma} \right\} - \frac{(U - J)}{2} \sum_{m\sigma} n_{mm}^{\sigma}$$

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U - J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm'}^{\sigma} \right\}$$

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U-J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm}^{\sigma} \right\}$$

Notes:

- U J can be considered as an effective U
- First derivations were not rotationally invariant
- One can go beyond mean-field, then need both U and J
- $E^{loc}(n_{mm'}^{\sigma} \text{ in ion})$ is called double-counting term
- Depends on the choice of atomic basis ϕ_m
- U depends on atom, orbital (d, f), atom environment

How to determine *U*?

$$E_{DFA+U} = E_{DFA} + \Delta E = E_{DFA} + \frac{(U-J)}{2} \left\{ \sum_{m\sigma} n_{mm}^{\sigma} - \sum_{mm'\sigma} n_{mm'}^{\sigma} n_{m'm}^{\sigma} \right\}$$

How to determine *U*?

- Compare DFA+U with experiment (band gap, structure) often unavailable
- Compare DFA+U with accurate methods (GW) expensive
- Ensure linear *E*(*N*) done using linear-response DFT

• From constrained random-phase approximation calculations - expensive, complex formalism

Pavarini, Koch, Vollhardt, and Lichtenstein, The LDA+DMFT approach to strongly correlated materials Modeling and Simulation Vol. 1 Forschungszentrum Juelich, 2011, ISBN 978-3-89336-734-4

U depends on atom, orbital (d, f), atom environment

Take-home messages:

Know what you are doing!

Non-linearity of $E(N) \rightarrow$ DFA failures

Functional development - active field of research (SIC, DFA+U, local hybrids, $\alpha = \frac{1}{\varepsilon_{\infty}}$, meta-GGA)

Strongly constrained and appropriately normed semilocal density functional

J Sun, A Ruzsinszky, JP Perdew Physical review letters 115 (3), 036402