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Overview



Can this be
machine-learned?

Prediction of convex hull of stable alloys

prototype Relaxed
structure

Structure Sampling

Structure Relaxation

QM

config EFS



Machine-learning interatomic potentials

My perspective



Machine learning as interpolation,
… data-driven and multidimensional.

• Problem: Given 𝐸!"(𝑿), interpolate 
it with 𝐸(𝑿)

• Issue: no transferability w.r.t. the 
number of atoms

• Solution: use locality! (An atom 
interacts only with 10-100 
neighboring atoms)



Traditional fitting
• Embedded atom model: 𝐸 = ∑!𝑉 𝑟!", 𝑟!#, … ,
• 𝑉 𝒓𝒊 = ∑%𝜑 𝑟!% + 𝐹 ∑% 𝜌 𝑟!% .
• Early interatomic potentials (=force fields) had few 

(three) parameters fitted from few experimental 
data (elastic constants, defect formation energy, 
etc.)

• Later potentials have tens of coefficients (e.g., 
spline coefficients) fitted from the QM data.

• What is different now: there are lots of data!
• So, the question is: how to incorporate lots of data 

into the models?



Machine-learning ideology:

1. Choose a (machine-learning) model 𝐸 = 𝐸(𝒙)
(𝒙 is an atomic configuration)

2. We want to minimize 𝐸!" − 𝐸 .
So we:

• Generate data: 𝒙 # , 𝒙 $ , …; 𝐸!" 𝒙 # , 𝐸!" 𝒙 $ ,…, 𝒇!" 𝒙 # , …

• Minimize on data: ∑% 𝐸 𝑥 % − 𝐸!" 𝑥 % $
+ (forces)+…

But what if sampling the right 𝒙 %

is a part of the problem?



Illustration: calculating convex hull
Problem:

• accurate sampling of ground 
state structures

needs
• accurate approximation of PES

which needs
• accurate sampling of ground 

state structures
which needs …

NEB



Solution: Active learning / Learning on-the-fly



Overview
1. Overview
• Why is this important?

2. Moment Tensor Potentials
3. Active learning (how to learn while sampling a PES)

4. Applications



A dream of comp.mater.sci



Molecular modeling
• ~40% of supercomputing time is 

spent on Molecular Modeling

[Adopted from nersc.gov]



Molecular dynamics scales

[D. Perez, LANL]



Overview
1. Overview
2. Machine-learning Potentials
3. Active learning (how to learn while sampling a PES)

4. Applications



Regression of Atomistic Properties
Basic problem:
• Given a molecule/atomic system 𝒓% predict its property 𝑭(𝒓%).
• Often, one does want to learn the physical symmetries (or, more 

generally physical properties), instead embed into the model.

• For interatomic potentials  Step 1 is to use locality



Locality: Energy

𝐸 =6
%

𝑉 𝑟%#, 𝑟%$, …

• Most interatomic potentials are covered. 
(Coulomb should be added explicitly.)

• Problem: find a good V.
• This step gives us:
• Transferability wrt number of atoms (can 

apply to systems with millions of atoms)
• translation invariance



Locality: Energy

𝐸 =6
%

𝑉 𝑟%#, 𝑟%$, …

• Most interatomic potentials are covered. 
(Coulomb should be added explicitly.)

• Problem: find a good V.
• This step gives us:
• Transferability wrt number of atoms (can 

apply to systems with millions of atoms)
• translation invariance

• To do next: rotation and permutation 
invariance



Rotation and permutation invariance: 
By far most popular solution is to design descriptors of atomic 
environments 
• Behler-Parrinello descriptors: 
𝐷($) 𝒓%⋅ = ∑) 𝑓 𝑟%) for some scalar function 𝑓
𝐷 * 𝒓%⋅ = ∑)∑+ 𝑓 𝑟%) 𝑓 𝑟%+ 𝜑 𝑟%) ⋅ 𝑟%+ for some scalar 𝑓 and 𝜑

For long time it was considered that they could generate a complete 
description of atomic environment, but recently it was proved that this 
is false: https://arxiv.org/pdf/2001.11696.pdf

https://arxiv.org/pdf/2001.11696.pdf


Regression: Neural networks
• Problem: given a vector of descriptors 𝑣#, … , 𝑣,, find the mapping 
𝐹 = 𝐹 𝑣#, … , 𝑣,
• Machine-learning approach: find 𝐹 = 𝐹 𝑣#, … , 𝑣, from data by 

fitting some parameters
• Two-level Neural network:

𝐹 𝒗 = 𝐴$𝑓 𝐴# 𝒗 + 𝒃# + 𝒃$,
Where matrices 𝐴#, 𝐴$ and vectors 𝒃#, 𝒃$ are found from data



Alternative: Gaussian process regression
• 𝐹(𝒓%⋅) = ∑- 𝑘 𝒓%⋅, 𝒓%⋅

- , where k is a kernel giving a similarity 
measure between the given atomic environment 𝒓%⋅ and those from 
the training(=fitting) set 𝒓%⋅

- .
• The problem reduces to designing a kernel satisfying physical 

symmetries



Alternative: Moment Tensor Potentials

Descriptors of atomic environments:
• Moments of inertia of surrounding atoms
• They satisfy the needed symmetries (rotation, 

permutation, translation, …); 
• Math:
• 𝑀.,0 𝒓𝒊2 = ∑) 𝑓. 𝑟%) 𝑟%) ⊗⋯⊗ 𝑟%)

0 34"56

𝑖

𝑟!"

𝑟!#

𝑟!$

𝑖

𝑀 = itertia tensorRadial term: extracting 
shells of neighboring atoms

Angular term: 
shell orientations



Moment Tensor Potentials, basis functions
• 𝑉 𝒖; 𝜃 = ∑7 𝜃7𝐵7(𝒖)
• 𝐵7 𝐮 are (all) different multiplications (contractions) of inertia tensors
𝑀0,. 𝐮 yielding a scalar.

Theorem:
• 𝐵7 𝐮 is a complete basis



Learning curves
Database (Csanyi, Bartok, Szlachta, 2014)
• Tungsten: uniform and perturbed lattices, vacancies, dislocations



Performance tests
Database (Csanyi, Bartok, Szlachta, 2014)
• Tungsten: uniform and perturbed lattices, vacancies, dislocations



Comparison with more methods

Yunxing Zuo,
Chi Chen,
Xiangguo Li,
Zhi Deng,
Yiming Chen,
Jörg Behler,
Gábor Csányi,
A.S.,
Aidan P. Thompson, 
Mitchell A. Wood,
Shyue Ping Ong.
arXiv:1906.08888



Training and Validation
Often, to test the quality of the potential we split training and 
validation:
• Machine-learning model: 𝐸 = 𝐸(𝜽, 𝒙)

• Training set: 𝒙38
# , … , 𝒙38

9 . Training: min
𝜽

∑+ 𝐸 𝜽, 𝒙38
+ − 𝐸38

+ $

• Validation set: 𝒙;<=
# , … , 𝒙;<=

9 . Validation error: 

1
𝐾
6
+

𝐸 𝜽, 𝒙;<=
+ − 𝐸;<=

+ $
#
$



Training and Validation



Active Learning of 
Interatomic Potentials



Active learning



Active Learning of MLIP: Motivation

Higher accuracy => More parameters to fit => Lower transferability



Active learning
Solution: detect when we are extrapolating and switch on learning
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Active learning
Solution: detect when we are extrapolating and switch on learning



Active learning: it’s about reliability, not accuracy

• Fitting 𝐸 𝑥 = 𝑥$ + 𝑥*exp(−𝑥$ /2) with 𝐸 𝑥 = 𝑐#𝑥$ + 𝑥$𝑥*

• Red: Minimizing the error on an “exact, infinitely long” MD, error=0.25
• Blue: Active learning, error=0.46

-4 - 2 0 2 4

5

10

15Reliable ->

Not reliable ->



How we do it?

D-optimality

Skip to Applications



D-optimality
essentially
• detects hitting outside a 

convex hull, 
but for linear models
(convex hull -> simplex)

E. Podryabinkin, A. Shapeev (2017)

Atomic descriptor 1

Atomic descriptor 2

Interpolation - ok

Extrapolation –
add to train set



Active Learning (AL) of Interatomic Potentials
• Fitting equations (overdetermined):

6
7>#

9

𝜃7𝑏7 𝐜𝐟𝐠(𝒌) = 𝐸!",(𝐤)

• Its matrix: 𝐵 =
𝑏# 𝐜𝐟𝐠(𝟏) … 𝑏9 𝐜𝐟𝐠(𝟏)

⋮ ⋱ ⋮
𝑏# 𝐜𝐟𝐠(𝑲) … 𝑏9 𝐜𝐟𝐠(𝑲)

• D-optimality criterion: find an 𝑁×𝑁 submatrix 𝐴 with largest det 𝐴
• Selecting rows = selecting configurations



AL in practice
MAXVOL algorithm (Goreinov et al., 2010): 
• Given:

• Current set 𝐴 =
𝑏" 𝐜𝐟𝐠(𝟏) … 𝑏5 𝐜𝐟𝐠(𝟏)

⋮ ⋱ ⋮
𝑏" 𝐜𝐟𝐠(𝑵) … 𝑏5 𝐜𝐟𝐠(𝑵)

• Candidate (new) 𝐜𝐟𝐠∗

• Define extrapolation grade (EG) = factor by which |det𝐴| can increase
• EG<1 = interpolation. EG > 1 + 𝜖 = include 𝐜𝐟𝐠∗ in the training set
• Can be done at 𝑂(𝑁$) complexity



AL: interpretations
Geometric interpretation
• The vector 𝑏# 𝐜𝐟𝐠∗ … 𝑏9 𝐜𝐟𝐠∗ is a descriptor in an N-dimensional 

space
• Increasing | det 𝐴 | = increasing the volume of the simplex based on 
𝐜𝐟𝐠 𝟏 , … , 𝐜𝐟𝐠 𝑵

Information-theoretic interpretation
• information = log det 𝐴 . Configuration is trained on if this increases the 

information.



AL: interpretations
Statistical interpretation
• If E!",(𝟏), … , E!",(𝑵) have random independent noise, then the noise in 

the model is minimized

Algebraic interpretation
• It can be shown that 𝐸 𝐜𝐟𝐠∗ = ∑% 𝑐%𝐸!",(𝒊), hence all 𝑐% ≤ 1 ⇔
𝐸 𝐜𝐟𝐠∗ is interpolated through 𝐸!",(𝒊).



Applications



Application #1: Learning on the fly

• Combines training and 
evaluation of MLIP

• Detects and learns 
“extrapolative” 
configurations

• Robust

• Balancing accuracy and 
amount of QM calcs



Application example #0: Learning on the fly in MD 
process at NVT-ensemble of 128 BCC-Li atoms

00.010.1110

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0 1000 2000 3000 4000

ΔE, eV

QM calcs

RMS Energy error vs. QM calcsQM calcs while learning on the fly

Conclusion: Amount of QM calcs can be reduced several times at the cost 
of minor losses in accuracy



Overview



We want to
machine-learn

this

Prediction of convex hull of stable alloys
How it is done:
1. Start with 1500 crystal prototypes 

(unequilibrated structures)
2. Equilibrate (relax) them with DFT and 

choose the ones on the convex hull

prototype Relaxed
structure

Structure Sampling

Structure Relaxation

QM

config EFS



prototype Relaxed
structure

Convex hulls now

Structure Sampling

Structure Relaxation

AL-MLIP 

QM

config EFS

config EFS

How it is done:
1. Start with 400K crystal prototypes 

(unequilibrated structures)
2. Equilibrate (relax) them with MLIP while 

learning on the fly

K. Gubaev,E. Podryabinkin, 
Gus L.W. Hart, A.S. (2019)



Results
• Some newly discovered structures are hard to “sample passively”:



Convex hulls now: details
1. Screen-1:

1. Start with 400K structures
2. Obtain 400K relaxed structures,

with RMSE = 25 meV/atom
3. Retain 60K low-energy structures 

(within 4-s)

2. Screen-2:
1. Start with 60K structures
2. Obtain 60K relaxed structures,

with RMSE = 8 meV/atom
3. Retain 7K low-energy structures 

(within 4-s)

3. Final relaxation:
1. Relax 7K structures on DFT



Results and Discussion
• No approximation error in the answer!

(We only take a risk of missing a structure in the 4-s interval.)

• 100x speed-up; CPU time:
1. Final relaxation: 90%
2. Training set: 9%
3. Training, Relaxation: 1%

• Main challenge: reduce the 90% Ü improve accuracy (8 meV/atom):
• Go beyond local environments (we quickly reach the limit with local interaction)
• Include spins (suffer from “jumping” from nonmagnetic PES to ferromagnetic PES)
• Periodic table-wide potential (reuse data from old systems from new systems)
• Better uncertainty estimation (better than just 4-s).

• Sampling is now the bottleneck, not DFT (we should make friends with 
Complex High-Dimensional Energy Landscapes)



On-lattice models: Cluster expansion
• Atoms of different kind sit in the 

lattice sites.
• Problem: predict the interatomic 

interaction energy (formation 
energy, mixing enthalpy)

E(                            ) = V1(   )+V1 (  )+…

+V2(      ) +V2…
+V3….



On-lattice models: Potentials
• Atoms of different kind sit in the 

lattice sites.
• Problem: predict the interatomic 

interaction energy (formation 
energy, mixing enthalpy)



Comparison with existing methods: 
without local lattice distortions

6

B2(Mo,Ta)

B32(Nb,W)

B2(Mo,W;Ta,Nb)

[2] Fritz Körmann, Andrei V Ruban, and Marcel HF Sluiter. Long-ranged interactions in bcc NbMoTaW high-entropy alloys. 
Materials Research Letters, 5(1):35-40, 2017.
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Results & discussion:
accounting for local lattice distortions
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“Perfect crime” of
machine-learning potentials
100-fold speed-up with no detectable trace of using machine learning

in the final result    (in short, a free lunch)

Alexander Shapeev1, Konstantin Gubaev1, Evgeny Podryabinkin1,
Gus Hart2

1: Skoltech  (Moscow, Russia)
2: BYU  (Provo, Utah)

2019 APS Meeting, Boston
04 March, 2019



Boron structures prediction challenges:

• A lot of allotropes

• Some allotropes has more than 100 atoms (impossible with DFT)
• Small energy/atom difference between structures with PES minima

Application 1b: Boron crystal structure 
prediction

B-12 (6.7058eV/atom)
10 days with DFT
3 days with MLIP B-28 (6.678eV/atom)

2 months with DFT
5 days with MLIP

B-54 (6.667eV/atom)
2 year on DFT
8 days on MLIP

B-106
Best Found on MLIP 
within 2 weeks

B-108 = B12 x9
10 years with DFT
2 weeks with MLIP

E. Podryabinkin, E. Tikhonov, 
A.S., Artem Oganov (2019)



Application #2: thermodynamic integration
• Vibration entropy of a MoNbTaVW

quasi-random structure
Blazej Grabowski, Yuji Ikeda, 
Fritz Koermann,
Christoph Freysoldt,
Andrew Duff, A.S., 
Joerg Neugebauer (2019)



Application #3: elastic properties
• Elastic constants C11 > C12 > C44 (bcc-Ti)

DFT with uncertainty (50 
000 DFT-MD time steps)

MTP (negligible statistical 
uncertainty)

We trade
• 1 GPa statistical error
for
• 1 Gpa model error and
• 1000x speed-up

A.S., E. Podryabinkin,
K. Gubaev, F. Tasnadi,
Igor Abrikosov (manuscript)



Application #4: Calculation of Diffusivities

Potential advantages:
• MTP: accurate  description of low-

symmetry configurations (e.g. 
saddle point)
• Active learning: rapid exploration of 

phase space
• Learning on the fly: effective 

sampling of rare events

NEB

Ivan Novoselov,
E. Podryabinkin,
A.S., Alexey Yanilkin (2019)



Application #5: Molecular reaction rates

• Use RPMD + MTP
• RMSE: ~ 0.1 – 0.2 kcal/mol
• Results for CH4+CN -> CH3+HCN at T=300K:

RPMDrate

MLIP 
(LOTF scheme)

QM

config EFS

config EFS

Rate
(𝑐𝑚*/𝑠)

Existing PES 
(reference)

AL-MLIP

Classical 4.5×10+,- 4.1×10+,- (9% error)
Quantum-corrected
(128 RPMD-beads)

2.5×10+,( 2.1×10+,( (20% error)

I. Novikov,
Y. Suleimanov, A.S. (2018)



Application #6: automated phase diagrams
Conrad Rosenbrock,
Livia Bartok-Partay,
Noam Bernstein, K. Gubaev, 
Gabor Csanyi, A.S., Gus Hart
(manuscript)

• Fitted a potential for 
Ag-Pd binary system 
(solid and liquid)



Application #6: automated phase diagrams
Conrad Rosenbrock,
Livia Bartok-Partay,
Noam Bernstein, K. Gubaev, 
Gabor Csanyi, A.S., Gus Hart
(manuscript)

• Fitted a potential for 
Ag-Pd binary system 
(solid and liquid)



On-lattice models: HEAs
• Atoms of different kind sit in the 

lattice sites.
• Problem: predict the interatomic 

interaction energy (formation 
energy, mixing enthalpy)

T. Kostiuchenko,
Fritz Koermann,
Joerg Neugebauer, A.S. (2019)



[2] Fritz Körmann, Andrei V Ruban, and Marcel HF Sluiter. Long-ranged interactions in bcc NbMoTaW high-entropy alloys. 
Materials Research Letters, 5(1):35-40, 2017.
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Summary: MLIP Code
• Public version: http://mlip.skoltech.ru/
• developer’s version (incl. unpublished capabilities) by request

• QM model interfaces:
• VASP, Gaussian (DFT)
• PROFESS (OFDFT) 

• Atomistic Driver interfaces:
• LAMMPS, serial and parallel (but no learning on the fly)
• USPEX
• ASE
• RPMDrate

• Active learning / Learning on the fly

http://mlip.skoltech.ru/


Related fields
• Learning Potential Energy Surfaces (PES) of molecules
• Similar idea, but no locality. Can be described, e.g., by all N (N+1)/2 pairwise 

distances in the system
• Older field (started before 2000),
• first time neural networks were applied to chemistry

• Cheminformatics
• Structure-property relations – learning things other than energy
• next lecture


