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Prediction of convex hull of stable alloys

Formation energy,
meV/atom
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Machine-learning interatomic potentials

My perspective



Machine learning as interpolation,

... data-driven and multidimensional.

* Problem: Given E9™ (X)), interpolate
it with E'(X)

* Issue: no transferability w.r.t. the X»
number of atoms

* Solution: use locality! (An atom
interacts only with 10-100
neighboring atoms) X




raditional fitting

* Embedded atom model: E = },; V (11,132, - ),

° V(rl)=2]§0(Tl])+F(Z],D(TU)) © 00 0 O 0 O O O O o

e Early interatomic potentials (=force fields) had few
(three) parameters fitted from few experimental

data (elastic constants, defect formation energy, 0 2°
EtC.) O 0 0 o
O O O
» Later potentials have tens of coefficients (e.g., 6 o o
spline coefficients) fitted from the QM data. 6 o o
* What is different now: there are lots of data! © 0 0 0 0o o0 0o o0

* So, the question is: how to incorporate lots of data
into the models?



Machine-learning ideology:

1. Choose a (machine-learning) model E = E(x)
(x is an atomic configuration)

2. We want to minimize |E9™ — E|.
So we:

« Generate data: x(V), x(2) __.; Eqm(x(l)) , Eqm(x(z)),..., fqm(x(l)),
* Minimize on data: Zi‘E(x(i)) - Eqm(x(i))‘z + (forces)+...

But what if sampling the right x(®)
is a part of the problem?



llustration: calculating convex hull
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Problem:

* accurate sampling of ground
state structures

needs
e accurate approximation of PES
which needs

* accurate sampling of ground
state structures

which needs ...



Solution: Active learning / Learning on-the-fly

Active learning simulation

Molecular Simulation

learning

yes < needs no

- 5
1 qal

learning? potential |
| (MTLP)

Get QM data




Overview

1.

Overview
 Why is this important?

Moment Tensor Potentials
Active learning (how to learn while sampling a PES)
Applications



A dream of comp.mater.sci
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Molecular modeling

* ~40% of supercomputing time is Quanturn
spent on Molecular Modeling Chemistry

Solvers

PIC Fusion

UInformatics_
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[Adopted from nersc.gov] )ENERGY -



Molecular dynamics scales
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Overview

Overview
Machine-learning Potentials
Active learning (how to learn while sampling a PES)
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Applications



Regression of Atomistic Properties

Basic problem:
* Given a molecule/atomic system r; predict its property F(r;).

e Often, one does want to learn the physical symmetries (or, more
generally physical properties), instead embed into the model.

* For interatomic potentials Step 1 is to use locality



Locality: Energy

E = E V(ril,riz, )
. 0O O O O O O o (@] O ®) O
l O

* Most interatomic potentials are covered.
(Coulomb should be added explicitly.)

* Problem: find a good V. o

* This step gives us: o

* Transferability wrt number of atoms (can o
apply to systems with millions of atoms) © o o o o o 6 o o ©

* translation invariance




Locality: Energy

E = E V(ril,riz, )
. 0O O O O O O o (@] O ®) O
l

* Most interatomic potentials are covered.
(Coulomb should be added explicitly.) °©°© 0000 00 00

* Problem: find a good V.

* This step gives us: °

* Transferability wrt number of atoms (can
apply to systems with millions of atoms)

* translation invariance

* To do next: rotation and permutation
Invariance




Rotation and permutation invariance:

By far most popular solution is to design descriptors of atomic
environments

* Behler-Parrinello descriptors:
D@ (r;) = ij(rij) for some scalar function f

D®(r;) = 2 Lk f(rij) f(ry) cp(rij : rik) for some scalar f and ¢
For long time it was considered that they could generate a complete

description of atomic environment, but recently it was proved that this
is false: https://arxiv.org/pdf/2001.11696.pdf



https://arxiv.org/pdf/2001.11696.pdf

Regression: Neural networks

* Problem: given a vector of descriptors vy, ..., vy, find the mapping
F=Fwyq..,vy)

* Machine-learning approach: find F = F(vy, ..., vy ) from data by
fitting some parameters

 Two-level Neural network:
F(v) = A;f (A v+ by) + by,

Where matrices A, A, and vectors b4, b, are found from data



Alternative: Gaussian process regression

cF(ri,)=X,k (ri., rlg)), where k is a kernel giving a similarity
measure between the given atomic environment r;. and those from
the training(=fitting) set r

i
* The problem reduces to designing a kernel satisfying physical
symmetries



Alternative: Moment Tensor Potentials

Descriptors of atomic environments:
 Moments of inertia of surrounding atoms

* They satisfy the needed symmetries (rotation,
permutation, translation, ...);

* Math:
° n,m(ri-) = ijn(‘rij‘)rij OSURRRNSY Tij

T tITeS

Oi

M = itertia tensor




Moment Tensor Potentials, basis functions

*V(u;0) = Xq 0,8, (u)
* B, (u) are (all) different multiplications (contractions) of inertia tensors
M, »(u) yielding a scalar.

Theorem:
* B, (u) is a complete basis



Learning curves

Database (Csanyi, Bartok, Szlachta, 2014)
* Tungsten: uniform and perturbed lattices, vacancies, dislocations

0.2r
0.1¢F
—e— crr(dy)
0.05r -—-—==-03 (HA)_O'227




Performance tests

Database (Csanyi, Bartok, Szlachta, 2014)
* Tungsten: uniform and perturbed lattices, vacancies, dislocations

Potential: GAP MTP; MTP,

CPU time/atom [ms]: 134 2.9 0.8
basis functions: 10000 11133 760
Fit errors:

force RMS error [eV/A]:  0.0633 0.0427 0.0633
[%]:  42%  28%  4.2%

Cross-validation errors:
force RMS error[eV /A]: - 0.0511 0.0642
[%]: - 34%  4.3%




Comparison with more methods
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raining and Validation

Often, to test the quality of the potential we split training and
validation:

* Machine-learning model: E = E(0, x)

2
8), ...,xg,v). Training: min )., (E (9, ng)) — Et(f))

0
o \/ali At A1) (N) T .
Validation set: x5, ..., X, 4- Validation error:

* Training set: x
1

1 2 \?
(zZ (5 (6.x12) — ) )

k



Error

raining and Validation
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Model complexity (e.g., number of 8s)

— training

—— validation error



Active Learning of
Interatomic Potentials



Active learning

Active learning simulation

Molecular Simulation

learning

yes < needs no

learning? | potential |
(MLP)

T

Get QM data




Active Learning of MLIP: Motivation

Higher accuracy => More parameters to fit => Lower transferability

6




Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning

\
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Solution: detect when we are extrapolating and switch on learning




Active learning

Solution: detect when we are extrapolating and switch on learning




Active learning: it’s about reliability, not accuracy

e Fitting E(x) = x? + x3exp(—x? /2) with E(x) = ¢;x?% + x,x3
e Red: Minimizing the error on an “exact, infinitely long” MD, error=0.25
* Blue: Active learning, error=0.46

Reliable ->

Not reliable ->




How we do it?

D-optimality

Skip to Applications




D_O pt| ma ‘ |ty Interpolation - ok

essentially Atomic desc&iptor 2 \.
 detects hitting outside a

convex hull,

but for linear models

(convex hull -> simplex)

>
omic descriptor 1

Extrapolation —
add to train set

E. Podryabinkin, A. Shapeev (2017)



Active Learning (AL) of Interatomic Potentials

* Fitting equations (overdetermined):

N
z B b (cfg®) = Eam

b (cfg®) .. by(cfg®)
* Its matrix: B = : :
b, (cfg®) .. by(cfg®)
* D-optimality criterion: find an NXN submatrix A with largest |det(4)]
 Selecting rows = selecting configurations



AL In practice

MAXVOL algorithm (Goreinov et al., 2010):

* Given:
b, (cfg®) ... bN(cfg(l)))

b (cfg™) ... by(cfg®M)
* Candidate (new) cfg”
* Define extrapolation grade (EG) = factor by which |detA| can increase

* EG<1 = interpolation. EG > 1 + € =include cfg” in the training set

* Currentset A = (

e Can be done at O(N?4) complexity



AL: Interpretations

Geometric interpretation

* The vector b, (cfg*) ... by(cfg*) is a descriptorin an N-dimensional
space

* Increasing | det A | = increasing the volume of the simplex based on
cfgV, ..., cfgV)

Information-theoretic interpretation

* information = log |det A|. Configuration is trained on if this increases the
information.



AL: Interpretations

Statistical interpretation

e If EA™(D) EIM(N) have random independent noise, then the noise in
the model is minimized

Algebraic interpretation

* It can be shown that E(cfg*) = ) ; CiE_'qm'(i), henceall |¢;| <1 &
E(cfg*) is interpolated through E9™ (),



Applications



Application

MD with empirical
potential

4 |

Empirical
potential

+ Fast
— Qualitative accuracy only

Ab-initio MD

4]

DFT

— Time consuming
+ Accurate

1: Learning on the fly

|  Combines training and
Hybrid MD evaluation of MLIP

* Detects and learns
“extrapolative”
configurations

Machine Learning
Potential

21  Robust

=8

Conﬁg

DFT
* Balancing accuracy and

+ Fast
+ Accurate (hopefully) amount Of QM Calcs



Application example #0: Learning on the fly in MD
process at NVT-ensemble of 128 BCC-Li atoms
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QM calcs while learning on the fly
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‘0 \./\; 4
QM calcs
0 1000 2000 3000 4000

Conclusion: Amount of QM calcs can be reduced several times at the cost

of minor losses in accuracy
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Prediction of convex hull of stable alloys

How it is done:

1.

Start with 1500 crystal prototypes
(unequilibrated structures)

Equilibrate (relax) them with DFT and
choose the ones on the convex hull

Structure Sampling
2i1dXel
t re

[w }

A

We want to
machine-learn
this




K. Gubaeyv,E. Podryabinkin,

Convex hulls now Gus LW. Hart, A.S. (2019)

How it is done:

1.

Start with 400K crystal prototypes
(unequilibrated structures)

Equilibrate (relax) them with MLIP while
learning on the fly

Structure Sampling

N &.
A

re

rotot

w. o

A

confi

|
ot 6

AL-MLIP

»

- config




Results

* Some newly discovered structures are hard to “sample passively”:

0.0 0.0 0.0
0% 909 9
0°0°0°0%0°




Convex hulls now: details

1. Screen-1:
1. Start with 400K structures

2. Obtain 400K relaxed structures,
with RMSE = 25 meV/atom

3. Retain 60K low-energy structures
(within 4-c)
2. Screen-2:
1. Start with 60K structures

2. Obtain 60K relaxed structures,
with RMSE = 8 meV/atom

3. Retain 7K low-energy structures
(within 4-c)

3. Final relaxation:
1. Relax 7K structures on DFT




Results and Discussion

* No approximation error in the answer!
(We only take a risk of missing a structure in the 4-c interval.)

* 100x speed-up; CPU time:
1. Final relaxation: 90%
2. Training set: 9%
3. Training, Relaxation: 1%

* Main challenge: reduce the 90% < improve accuracy (8 meV/atom):
* Go beyond local environments (we quickly reach the limit with local interaction)
* Include spins (suffer from “jumping” from nonmagnetic PES to ferromagnetic PES)
* Periodic table-wide potential (reuse data from old systems from new systems)
* Better uncertainty estimation (better than just 4-c).

 Sampling is now the bottleneck, not DFT (we should make friends with
Complex High-Dimensional Energy Landscapes)



On-lattice models: Cluster expansion

e Atoms of different kind sit in the
lattice sites.

* Problem: predict the interatomic
interaction energy (formation
energy, mixing enthalpy)

(T ) = V()4 (0)+

+V2( ®s ) +V2...
+V;....




On-lattice models: Potentials

e Atoms of different kind sit in the
lattice sites.

* Problem: predict the interatomic
interaction energy (formation
energy, mixing enthalpy)

E(.'.:.;.::'.' )=V(e.0.0.0.0.0.0)+...




Comparison with existing methods:
without local lattice distortions
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[2] Fritz Kbrmann, Andrei V Ruban, and Marcel HF Sluiter. Long-ranged interactions in bcc NoMoTaW high-entropy alloys. 6

Materials Research Letters, 5(1):35-40, 2017.



Specific heat capacity (kg)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

accounting for local

Results & discussion.

i . meV
- ] Prediction error 1
i atom

0

500

1000
Temperature (K)

1500

I [
2000

o ?ooooooooo
RP WP

000000Q9000
0d®0000000
00, ~ 20000000

oo?? 0000000

% e Y Y YV V. V. V.
A A 4 4 4 4 4 4 4 4 J

00
©000000QP000

lattice distortions

Nb-Mo-Ta-W-
W-Ta-Mo-Nb

Semi-ordered lattice
structure

(100)
O Nb O Ta
O Mo O W

7



“Perfect crime” of
machine-learning potentials

100-fold speed-up with no detectable trace of using machine learning
in the final result (in short, a free lunch)

Alexander Shapeev?, Konstantin Gubaev?!, Evgeny Podryabinkint,
Gus Hart?

1: Skoltech (Moscow, Russia)
2: BYU (Provo, Utah)

2019 APS Meeting, Boston
04 March, 2019



Application 1b: Boron crystal structure
p rec ICtIO N E. Podryabinkin, E. Tikhonoy,

A.S., Artem Oganov (2019)

Boron structures prediction challenges:
* Alot of allotropes
* Some allotropes has more than 100 atoms (impossible with DFT)

* Small energy/atom difference between structures with PES minima

; ARSI AT
| RS OIS
B-12 (6. FLIHTE KA
10 days with DFT PXREVNAPXREY
3 days with MLIP ~ B-28(6.678eV/atom) .54 (6 667eV/atom)  B-106 B-108 = B12 X9
2 months with DFT
2 year on DFT Best Found on MLIP 10 years with DFT

5 days with MLIP 8 days on MLIP within 2 weeks 2 weeks with MLIP



(b)

Standard deviation (meV)
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Application

* VVibration entropy of a MoNbTaVW

quasi-random structure

S 36
Un OK harmonic 25 E
. 162
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K’\h'\arnlomc 9 g
mkﬂv: =
EAM — —+ U
e -1
—— ——
0 MTP ~2 meV D jo
0 0.25 0.5 0.75 |
ref Coupling constant A DFT

2: thermodynamic integration

Blazej Grabowski, Yuji Ikeda,
Fritz Koermann,

Christoph Freysoldt,
Andrew Duff, A.S.,

Joerg Neugebauer (2019)

0K harm. DFT
-2008 meV

-31 meV
anharmonicity

full DFT > MTPp | meV
2039 meV 7 s ~2040 meV
S EAM
2052 meV

effective harm.
-2059 meV



Application

A.S., E. Podryabinkin,

3: E‘aStlc propertles K. Gubaey, F. Tasnadi,

lgor Abrikosov (manuscript)

* Elastic constants C; > C;, > C,, (bcc-Ti)

Cjj (GPa)
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25}
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1000

1200
T (K)

1400

1600

110 — DFT with uncertainty (50
105 000 DFT-MD time steps)
100

lgs MTP (negligible statistical

uncertainty)

186

We trade

* 1 GPa statistical error
for

* 1 Gpa model error and
 1000x speed-up

180

125



Application #4: Calculation of Diffusivities

lvan Novoselov,
E. Podryabinkin,
A.S., Alexey Yanilkin (2019)

Potential advantages:

* MTP: accurate description of low-
symmetry configurations (e.g.
saddle point)

* Active learning: rapid exploration of
phase space

* Learning on the fly: effective

sampling of rare events o1 . [ | l
0 0.2 0.4 0.6 0.8 1

Reaction Coordinate, a.u.




Application #5: Molecular reaction rates

|. Novikov,
Y. Suleimanov, A.S. (2018)

e Use RPMD + MTP RPMDrate

Y Rate Existing PES | AL-MLIP o {EFS\
(cm3/s) (reference) contis
]
Classical 45%x107%  4.1x107 (9% error) MLIP
7 7 (LOTF scheme)
Quantum-corrected 2.5%10 2.1%x10 (20% error)
(128 RPMD-beads) ~ config @




Application #6: automated phase diagrams

Conrad Rosenbrock,

Livia Bartok-Partay,

Noam Bernstein, K. Gubaey,
Gabor Csanyi, A.S., Gus Hart
(manuscript)

* Fitted a potential for
Ag-Pd binary system
(solid and liquid)



Application #6: automated phase diagrams

Conrad Rosenbrock,

Livia Bartok-Partay, 1600 Machine Learned Phase Diagram via Nested Sampling: AgPd
Noam Bernstein, K. Gubaey,
Gabor Csanyi, A.S., Gus Hart 1500 -
(manuscript)
1400 -
S 1300 -
* Fitted a potential for ® oo |
: 2 "- —_— Au=-2.5
Ag-Pd binary system ; A= 2\3
. . 8 1100 - R
(solid and liquid) £ p=-1
= 1000 & — Au=1.2
" i pii i — Du=-2.1
900 - S I
o Au=2.3
800 - S N — Au=-27
Experiment
700 1 1 ) ] - ) 1
0 20 40 60 80 100

Composition (%Ag)



On-lattice models: HEAS

e Atoms of different kind sit in the
lattice sites.

* Problem: predict the interatomic
interaction energy (formation
energy, mixing enthalpy)

® ® 6 ¢ O

L @ 8 0
® ® 5 L

E( “vooocs )=Vie.0,0.0.0.0.0)+ ..

e S0
® L ®
e o0 0500

T. Kostiuchenko,
Fritz Koermann,
Joerg Neugebauer, A.S. (2019)




Comparison with existing methods:
without local lattice distortions

l ' I ' ' ' ' .
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S 06F
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[2] Fritz Kbrmann, Andrei V Ruban, and Marcel HF Sluiter. Long-ranged interactions in bcc NoMoTaW high-entropy alloys.

Materials Research Letters, 5(1):35-40, 2017.
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Summary: MLIP Code

* Public version: http://mlip.skoltech.ru/
» developer’s version (incl. unpublished capabilities) by request

e QM model interfaces:
e VASP, Gaussian (DFT)
« PROFESS (OFDFT)

e Atomistic Driver interfaces:
* LAMMPS, serial and parallel (but no learning on the fly)
e USPEX
e ASE
* RPMDrate

* Active learning / Learning on the fly


http://mlip.skoltech.ru/

Related fields

 Learning Potential Energy Surfaces (PES) of molecules

 Similar idea, but no locality. Can be described, e.g., by all N (N+1)/2 pairwise
distances in the system

e Older field (started before 2000),
* first time neural networks were applied to chemistry

* Cheminformatics
e Structure-property relations — learning things other than energy
* next lecture



