Mathematics

Alexander Shapeev¹,

1: Skoltech (Moscow)

Skoltech, AMM course 22 May 2020

Some math (or physics?)

- Schrodinger equation: minimize $E^{S}(\varphi(R_1, ..., R_N; r_1, ..., r_n))$
- Born-Oppenheimer: minimize $E^{\mathrm{BO}}(R_1,\ldots,R_N;\;\varphi(r_1,\ldots,r_n))$
- Exact DFT functional: minimize $E^{\mathrm{dft}}(R_1, ..., R_N; \rho(\xi))$, where

$$E^{\mathrm{dft}}(R_1, \dots, R_N; \rho(\xi)) = \min_{\varphi} E^{\mathrm{BO}}(R_1, \dots, R_N; \varphi(r_1, \dots, r_n))$$

subject to $\rho(r_1) = n \int \varphi \bar{\varphi} \, \mathrm{d}r_2 \dots \mathrm{d}r_n$

• Interatomic potentials: minimize $E^{ip}(R_1, ..., R_N)$, where

$$E^{\mathrm{ip}}(R_1, \dots, R_N) = \min_{\rho} E^{\mathrm{dft}}(R_1, \dots, R_N; \rho(r))$$

Hohenberg Kohn Sham

Interested in ground state (potential energy surface)

$$PES(R_1, ..., R_N) = \min_{\varphi} E^{BO}(R_1, ..., R_N; \varphi(r_1, ..., r_n))$$

• Let's do the minimization in two steps:

$$\min_{\rho} \min_{\varphi: \varphi \sim \rho} E^{BO}(R_1, \dots, R_N; \varphi(r_1, \dots, r_n))$$

$$\min_{\rho} \min_{\varphi: \varphi \sim \rho} E^{\text{BO}}(R_1, \dots, R_N; \varphi(r_1, \dots, r_n))$$

$$=: E^{\text{exact-dft}}(R_1, \dots, R_N, \rho(r))$$

Ground state problem now:

$$\min_{\rho} E^{\text{exact-dft}}(R_1, \dots, R_N, \rho(r))$$

Some math (or physics?)

• Interatomic potentials: minimize $E^{ip}(R_1, ..., R_n)$, where

$$E^{\mathrm{ip}}(R_1, \dots, R_n) = \min_{\rho} E^{\mathrm{dft}}(R_1, \dots, R_n; \rho(\xi))$$

• Magnetic disorder: many local minima of $E^{\mathrm{dft}}(R_1, ..., R_n; \rho(\xi))$. Then

$$E^{\text{ip}}(R_1, ..., R_n; s_1, ..., s_n) = \min_{\rho} E^{\text{dft}}(R_1, ..., R_n; \rho(\xi))$$

subject to
$$s_i = \int_{\text{around } x_i} (\rho^+(x) - \rho^-(x)) dx$$

On-lattice (cluster expansion) type potentials

- Start with $E^{ip}(x_1, ..., x_n; z_1, ..., z_n)$, here by x_i I mean displacements from ideal lattice
- Define:

$$E^{\text{lat}}(z_1, ..., z_n) = \min_{x_1, ..., x_n} E^{\text{ip}}(x_1, ..., x_n; z_1, ..., z_n)$$

• Works if z_1, \dots, z_n define well the corresponding minimum of energy

Provocative question: all we are doing is a botany of near-ground state

- is it true?

On-lattice (cluster expansion) type potentials

Finite temperature? No problem*:

$$E^{\text{lat}}(z_1, \dots, z_n)$$

$$= -k_B T \log \int \exp(-E^{\text{ip}}(x_1, \dots, x_n; z_1, \dots, z_n) / (k_B T)) dx$$

• Works if z_1, \dots, z_n define well the corresponding minimum of free energy

* Conceptually

Hellmann Feynman aka 2n+1 theorem

• Ground state wrt electronic degrees of freedom (DoF):

$$E(\mathbf{x}) = \min_{\rho} \widehat{E}(\mathbf{x}, \rho)$$

- Let's denote by $\rho^*(x)$ the minimizer of $\widehat{E}(x,\rho)$ for a given x. (Mathematicians say $E(x) = \widehat{E}(x,\rho^*(x))$, where $\rho^*(x) = \operatorname{argmin}_{\rho} \widehat{E}(x,\rho)$)
- Minimum = derivatives are zero:

$$\nabla_{\!\!\rho} \hat{E}(\mathbf{x}, \rho^*(\mathbf{x})) = 0$$

• Hence forces:

$$\nabla_{x}E(x) = \nabla_{x}\hat{E}(x,\rho^{*}(x)) + \left(\nabla_{\rho}\hat{E}(x,\rho^{*}(x)),\nabla_{x}\rho^{*}(x)\right)$$

Equilibrium Thermodynamics

- Having energy E(x) and inverse temperature $\beta=(k_{\rm B}T)^{-1}$, the probability (density) of seeing state x is proportional to $\exp(-\beta E(x))$
- Hence probability density $= Z^{-1} \exp \left(-\beta E(x)\right)$, where the normalizing factor

$$Z = Z(\beta) = \int \exp(-\beta E(x)) dx$$

is called the partition function

Equilibrium Thermodynamics

- Imagine phase A given by a set of states A and phase B given by the set B
- Then probability of A is

$$p(A) = Z^{-1} \int_{A} \exp(-\beta E(x)) dx, \quad \text{and}$$
$$p(B) = Z^{-1} \int_{B} \exp(-\beta E(x)) dx$$

- Free energy of A is $F(A) = -\beta^{-1} \log \left(\int_A \exp(-\beta E(x)) dx \right)$
- $p(A) \sim -\exp(F(A))$. In fact, as number of DoF $\to \infty$, $p(A) \to 0$ or 1 (depending whether A is a ground state).

Thermodynamic integration

- Free energy $F(A) = -\beta^{-1} \log(\int \exp(-\beta E(x)) dx)$ is hard to compute directly (it is a multidimensional integral)
- But its derivative with respect to any variable *v* is easy:

$$\frac{\mathrm{d}F}{\mathrm{d}v} = \frac{\int \frac{\mathrm{d}E}{\mathrm{d}v} \exp(-\beta E(x)) \,\mathrm{d}x}{\int \exp(-\beta E(x)) \,\mathrm{d}x} = \mathbb{E}\left[\frac{\mathrm{d}E}{\mathrm{d}v}\right]$$

(Boltzmann average that is usually computed in MD)

Ergodicity

Theorem: integral over a long trajectory = integral wrt Boltzmann distribution:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(\mathbf{x}(t)) dt = \mathbb{E}[f(x)]$$

• (You prove it for a realistic system -> Fields medal)

Example (sloppily done)

Pressure as derivative of free energy wrt volume:

$$\frac{\mathrm{d}F}{\mathrm{d}V} = \frac{\int \frac{\mathrm{d}E}{\mathrm{d}V} \exp(-\beta E(x)) \,\mathrm{d}x}{\int \exp(-\beta E(x)) \,\mathrm{d}x} = \mathbb{E}[p(x)]$$

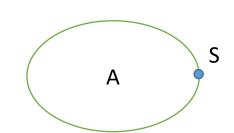
- can be done by averaging pressure over the course of MD more carefully:

$$\frac{\mathrm{d}F}{\mathrm{d}V} = \frac{\int_{V} \frac{\mathrm{d}E}{\mathrm{d}V} \exp(-\beta E(x)) \,\mathrm{d}x}{\int_{V} \exp(-\beta E(x)) \,\mathrm{d}x} + \beta^{-1} \log(\beta^{-1}V)$$
$$= \mathbb{E}\left[p_{\mathrm{virial}}(x) + \frac{\beta^{-1}}{V}\right] = \mathbb{E}[p_{\mathrm{full}}(x)]$$

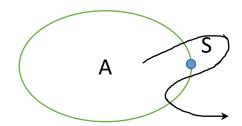
Transition state theory

 Count the number of times an infinite trajectory crosses surface S from state A:

$$\nu = \frac{\int_{S} \exp(-\beta E(x)) dx}{\int_{A} \exp(-\beta E(x)) dx}$$



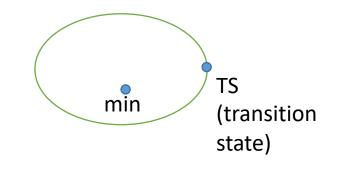
Not entirely what we want: recrossings (counts as two)



Transition state theory

• TST:

$$v = \frac{\int_{S} \exp(-\beta E(x)) dx}{\int_{A} \exp(-\beta E(x)) dx}$$



• Harmonic TST: Taylor expansion in β^{-1} :

$$-\beta^{-1} \log(\nu) = E_{TS}(x) - E_{min}(x) - \beta^{-1} \log(pF),$$

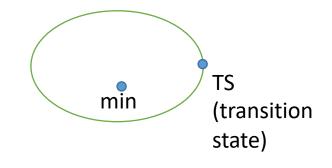
where pF is called the prefactor that depends on oscillation frequencies at min and TS. From here

$$\nu = \text{pF} \exp\left(-\beta \left(E_{\text{TS}}(\boldsymbol{x}) - E_{\text{min}}(\boldsymbol{x})\right)\right) + O(\beta^{-1})$$

Idea:

• TST:

$$\nu = \frac{\int_{S} \exp(-\beta E(x)) dx}{\int_{A} \exp(-\beta E(x)) dx}$$



$$\exp \int \left(-\beta E(x_{\min}) - \frac{\beta E''(x_{\min})(x - x_{\min})^2}{2}\right) dx$$

$$= \exp(-\beta E(x_{\min})) \sqrt{\frac{2\pi}{\beta E''(x_{\min})}}$$

Exponential factor

prefactor