

Modeling of energy storage materials

<u>D. Aksyonov</u>, A. Boev, S. Fedotov, A. Zhugayevych, K. Stevenson, A. Abakumov Center for Energy Science and Technology, Skoltech

Outline

 Motivation to study energy materials and introduction into battery components

- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces
- 4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

D. Aksenov, Skoltech

More than 1 billion gasoline cars on Earth

Gas chamber for execution:

D. Aksenov, Skoltech

Solution: renewables and electric cars

- Renewable electricity is unpredictable
- Electric cars the range is limited the price is high
- Both currently are economically unreasonable What can change the situation?

Affordable energy storage!

D. Aksenov, Skoltech

Energy storage technologies

D. Aksenov, Skoltech

Among energy storage technologies Li-ion is the main for portable electronics, cars, and even grid storage

The best known advocate for Li-ion is Tesla

Model 3 up to 500 000 cars in 2020

Tesla heavy Truck

D. Aksenov, Skoltech

How the metal-ion battery works

D. Aksenov, Skoltech

Important battery metrics

Metric	Depends on		
Voltage (V)	Chemistry and structure of cathode and anode, working window of electrolyte		
Capacity (C)	Chemistry and structure of cathode and anode		
Energy density	E = ∫V(C)dC		
Safety	Thermodynamical stability of cathode, anode, and electrolyte, battery construction		
Power density	lonic and electronic conductivity of cathode and anode		
Both anode and cathodes are important! In our work we study cathodes			

Main classes of cathode materials

CoO₆ octahedra

LiCoO₂, NaCoO₂ Layered oxides, Transition metals are Co, Mn, Ni good for Li and Na

D. Aksenov, Skoltech

 VO_6

octahedra

LiFePO₄, NaFePO₄ Olivines High stability

Other polyanion materials, e.g. $KVPO_4F$, Na_2FePO_4F , etc. SO_4 , SiO_4 , BO_3 polyanion Li, Na and K

Anode materials

Anatase, LiTiO₂

Electrolytes: liquid and solid

Li salts, such as LiPF_6 in organic solvents such as ethylene carbonate, propylene carbonate, etc

Solid electrolytes

Meesala, Yedukondalu, et al. "Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries." *ACS Energy Letters* 2.12 (2017): 2734-2751.

D. Aksenov, Skoltech

Outline

1. Motivation to study energy materials and introduction into battery components

- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces
- 4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

D. Aksenov, Skoltech

Modeling of battery materials

Cathodes, anodes, solid state conductors:

- Phase stability (DFT+U)
- Intercalation voltages and intercalation mechanism (DFT+U, Hybrid)
- Diffusivity of cations (DFT+U, MD)
- Defects and influence on properties(DFT+U)
 Liquid electrolytes (DFT, MD):
- Solvation energies (MP2, CI, CC, DFT)
- Electrolyte stability (MP2, CI, CC, DFT)

Li-Fe-P-O phase diagram, $\mu(O_2) = -12.4 \text{ eV}$

1. Ong, S.P., Wang, L., Kang, B. and Ceder, G. Li–Fe–P–O2 Phase Diagram from First Principles Calculations. Chemistry of Materials. 20, 5 (Mar. 2008), 1798–1807.

D. Aksenov, Skoltech

Average intercalation voltage

$$\overline{V}(x_1, x_2) \approx -\frac{E(\text{Li}_{x_1} \text{MO}_2) - E(\text{Li}_{x_2} \text{MO}_2) - (x_1 - x_2) E(\text{Li})}{(x_1 - x_2) F}$$

with $x_1 > x_2$,

Urban, A. et al.// npj Computational Materials 2.1 (2016): 1-13.

D. Aksenov, Skoltech

DFT+U calculations

Voltage profile NaCoO2 (P2)

D. Aksenov, Skoltech

Calculation of voltage profiles

Urban, A. et al.// npj Computational Materials 2.1 (2016): 1-13.

D. Aksenov, Skoltech

Thermal stability of electrode

$$Li_{x}M_{y}O_{z+z'} \rightarrow Li_{x}M_{y}O_{z} + \frac{z'}{2}O_{2}, \ \Delta G_{r} \approx E(Li_{x}M_{y}O_{z}) + \frac{z'}{2}E^{*}(O_{2}) - E(Li_{x}M_{y}O_{z+z'}) - \frac{z'}{2}TS_{O_{2}}^{p_{0}}(T),$$

D. Aksenov, Skoltech

Main errors in DFT+U for calculating formation energies of cathode materials

(i) a constant energy shift of the DFT O_2 energy to account for overbinding fixed by constant correction

(ii) a Hubbard U correction

using U values fitted to experimental oxide formation energies error in the formation energies of transition-metal oxides from up to 1.0 eV with GGA to less than 0.1 eV in most cases.

Urban, A. et al.// *npj Computational Materials* 2.1 (2016): 1-13.

Typical galvanostatic curve at different C-rates shows diffusion limitation

Massé, Robert C., et al. "Energy storage through intercalation reactions: electrodes for rechargeable batteries." *National Science Review* 4.1 (2017): 26-53.

D. Aksenov, Skoltech

Ionic conductivity, Ab initio MD

Nernst-Einstein relation for ionic conductivity. N₁₁ is the number of lithium ions, V is the volume of the simulation cell D. Aksenov, Skoltech 26.05.2020

Urban, A. et al.// npj Computational Materials 2.1 (2016): 1-13.

Mo, Yifei, Shyue Ping Ong, and Gerbrand Ceder. " Chemistry of Materials 24.1 (2012): 15-17.

3.0 3.5

Diffusivity based on 0 K migration barriers

Rate of the hopping process

$$k(T) = \nu^*(T) \ e^{-\frac{\Delta G^{\ddagger}(T)}{k_{\mathsf{B}}T}},$$

v^{*} is temperature-dependent effective attempt frequency, $\Delta G \ddagger$ is Gibbs free energy of activation (migration barrier)

$$D\approx g\cdot a^2\cdot k$$
,

a is hopping distance, g is geometrical factor (~1)

Typical values for the prefactor v* are 10^{11} to 10^{13} s⁻¹

NEB method for finding saddle points

Nudged elastic band method (NEB) is used to find minimum energy paths and migration barriers at saddle points.

The spring forces keep the images spaces equally, allowing to propagate a chain towards minimum energy path.

Outline

1. Motivation to study energy materials and introduction into battery components

2. Modeling of solid electrodes

3. Modeling of electrolytes and interfaces

4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

D. Aksenov, Skoltech

Modeling of electrolyte

Marcinek, M., et al. Solid State Ionics 276 (2015): 107-126.

D. Aksenov, Skoltech

26.05.2020

Bogle, X, et al. *The journal of physical chemistry letters* 4.10 (2013): 1664-1668. 26/82

Electrochemical stability of electrolytes

 $\begin{array}{lll} \text{reduction}: & \Delta G_{\text{red}}^{\text{s}} &= G[\mathsf{M}^{n-}(\mathsf{s})] - G[\mathsf{M}(\mathsf{s})] - nG[\mathsf{e}^{-}(\mathsf{s})] \\ \text{oxidation}: & \Delta G_{\text{ox}}^{\text{s}} &= G[\mathsf{M}^{n+}(\mathsf{s})] + nG[\mathsf{e}^{-}(\mathsf{s})] - G[\mathsf{M}(\mathsf{s})], \end{array}$

HOMO and **LUMO** for screening electrolytes

Electrolyte/electrode interface the largest challenge for modelling now

Diffusion is only half of the story, kinetics of interphase charge transfer is highly important

Li, Yunsong, and Yue Qi. "Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface." *Energy & Environmental Science* 12.4 (2019): 1286-1295. Lück, Jessica, and Arnulf Latz. "Modeling of the electrochemical double layer and its impact on intercalation reactions." *Physical Chemistry Chemical Physics* 20.44 (2018): 27804-27821.

D. Aksenov, Skoltech

Outline

1. Motivation to study energy materials and introduction into battery components

- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces

4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

D. Aksenov, Skoltech

What is high-throughput (HT) computational materials design?

- the amount of data is way too high to be produced or analyzed by direct intervention of researcher - therefore must be performed automatically
- the results are stored in database, which is further analyzed for selecting novel materials or gaining new physical insights

The next step and a revolution in computational materials design!

High-throughput computational screening of new Li-ion battery anode materials

Kirklin, Scott, Bryce Meredig, and Chris Wolverton. "High-throughput computational screening of new Li-ion battery anode materials." *Advanced Energy Materials* 3.2 (2013): 252-262.

D. Aksenov, Skoltech

High-throughput Electrolyte discovery

Cheng, Lei, et al. "Accelerating electrolyte discovery for energy storage with high-throughput screening." *The journal of physical chemistry letters* 6.2 (2015): 283-291.

D. Aksenov, Skoltech

Screening of Cathode Coatings for Solid-State Batteries

Coatings	ICSD #	Calculated Migration Barrier (eV)	Experimental Activation Energy (eV)
Li ₂ ZrO ₃	31941	0.48	0.5, ⁷⁷ 0.68 ⁷⁸
LiH ₂ PO ₄	100200	0.33	_ ^a
LiTi ₂ (PO ₄) ₃	95979	0.42	0.47 ⁷⁹
$LiBa(B_3O_5)_3$	93013	1.96	-
LiPO ₃	51630	0.40	1.40 ⁸²
LiLa(PO ₃) ₄	416877	1.39	0.92 ^{b81}
LiCs(PO ₃) ₂	62514	1.27	1.31 ⁸⁰

Xiao, Yihan, et al. "Computational screening of cathode coatings for solid-state batteries." *Joule* 3.5 (2019): 1252-1275.

Screening of more than 12 000 candidates for solid lithium-ion conductor materials

Sendek, Austin D., et al. "Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials." *Energy & Environmental Science* 10.1 (2017): 306-320.

Development of code SIMAN for Automation of DFT calculations

- SIMAN package, on github <u>https://github.com/dimonaks/siman</u> (~30 000 lines of code)
 - generation of input files for VASP (DFT) or other codes
 - batch submission of hundreds of jobs and workflows
 - extraction and advanced analysis of output results

D. Aksenov, Skoltech
Optimize volume using Siman at two e-cut

1 new = InputSet()
2 new.read_incar('INCAR')

The set can be added to the predefined persistent dictionary by

1 sets['S400'] = new

1 read_vasp_sets([('S600', 'S400', {'ENCUT':600})])

Results of optimization

- In the same manner, each step required in calculations is automated
- Very useful when you have several structures and elements to study

D. Aksenov, Skoltech

Outline

- 1. Motivation to study energy materials and introduction into battery components
- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces
- 4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

D. Aksenov, Skoltech

Our method for electronic structure calculation

- DFT + U (VASP code)
- U = 6.2 (Ni), 3.4 (Co) , 4.0 (Fe), 3.1 (V) eV
- PAW PBE potentials
- Spin polarized ferromagnetic
- Dipole correction for slab
- Energy cut-off 400 eV
- kpoint density 0.03 Å⁻¹
- Forces less than 0.05 eV/Å

Case study: point defects in cathodes

- Point defects have influence on ionic and electronic conductivity and its mechanism
- Play key role in degradation of cathode materials

Unusual point defects in LiFePO₄

Formula	name	а	b	С
LiFePO ₄	triphylite	4.70	6.00	10.33

Experimentally observed compositions obtained with hydrothermal synthesis at Skoltech and MSU

$$Li_{0.93}Fe_{1.07}P_{0.84}$$
$$Li_{0.95}Fe_{1.05}P_{0.87}$$
$$Li_{0.98}Fe_{1.02}P_{0.88}$$

Up to 16% of P vacancies! Is it possible in $LiFePO_4$?

Sumanov, V D., D.A. Aksyonov, O.A. Drozhzhin, et al. // Chemistry of Materials 31, no. 14 (2019): 5035-5046.

Li-Fe-P-O phase diagram, $\mu(O_2) = -12.4 \text{ eV}$

1. Ong, S.P., Wang, L., Kang, B. and Ceder, G. Li–Fe–P–O2 Phase Diagram from First Principles Calculations. Chemistry of Materials. 20, 5 (Mar. 2008), 1798–1807.

D. Aksenov, Skoltech

Formation energy of P vacancies

$$dE = [E(LiFeP_{1-x}Vac_xO_4) - E(LiFePO_4) + x\mu(P)]/x$$

 $C_{vac} = exp(-3.5/kT) \sim 10^{-36}$ at T = 473 K - no vacancies are possible

D. Aksenov, Skoltech

How the P vacancy energy can be reduced?

In metals, hydrogen is trapped in vacancies E.g. in tungsten up to 12 H go into vacancy

8 H in vacancy in tungsten

PHYSICAL REVIEW B 82, 094102 2010

What if 4 hydrogens substitute one P?

 $E_{sub} = [E(LiFeP_{1-x}Vac_{x}H_{4x}O_{4}) - E(LiFePO_{4}) + x\mu(P) - 4\mu(H)]/4x$

Hydrogen stabilize P vacancy reducing it's formation energy from 4.8 eV to 2.1 eV

What about other substitutions?

D. Aksenov, Skoltech

Experimental confirmation of 4H defect

 After theoretical prediction the existence of 4H defects was confirmed experimentally at our center using both Mossbauer and Infrared spectroscopy.

 However, the exact atomic structure of defect is known only from DFT calculations

Sumanov, Vasily D., Dmitry A. Aksyonov, Oleg A. Drozhzhin, Igor Presniakov, Alexey V. Sobolev, Iana Glazkova, Alexander A. Tsirlin et al. ""Hydrotriphylites" Li1–x Fe1+ x (PO4) 1–y (OH) 4 y as Cathode Materials for Li-ion Batteries." *Chemistry of Materials* 31, no. 14 (2019): 5035-5046.

D. Aksenov, Skoltech

In mineral world hydrogarnet defect in Mg_2SiO_4 is known for a long time

Phys Chem Minerals (1983) 9:57-60

A Model of the OH Positions in Olivine, Derived from Infrared-Spectroscopic Investigations

A. Beran¹ and A. Putnis²

¹ Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl Lueger-Ring 1, 1010 Vienna, Austria

² Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B8, PAGES 18,977-18,982, AUGUST 10, 2000

An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening

John P. Brodholt Department of Earth and Planetary Sciences, University College London, London

Keith Refson Department of Earth Science, University of Oxford, Oxford, England

Abstract. Even small amounts of water can profoundly effect the physical properties of minerals. In olivine <1 H in every 1000 unit cells acts to increase creep rates of dunite by ~ 2 orders of magnitude. Although the mechanism for this is not known, it is not unreasonable to suggest that it is in some way related to an increase in the point defect population. In order to understand this better we have performed ab initio pseudopotential calculations within the generalized gradient approximation on protonic defects in Mg_2SiO₄ forsterite. Three mechanisms for incorporating protons are considered: (1) interstitial, (2) binding at cation vacancies, and (3) binding at silicon vacancies.

(though P/3H)

in

Refson

First experimental evidence

of hydrogarnet type defect

in olivine was obtained by Beran and Putnis in **1983**

DFT calculations for P/4H

2000 by Brodholt and

Mg₂SiO₄ was done in

D. Aksenov, Skoltech

Outline

- 1. Motivation to study energy materials and introduction into battery components
- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces
- 4. High-throughput modeling
- Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

Morphology and surface structure of cathode particles is highly important!

(d)

(10-14)

Ζ

Carlier2001 Kramer2009

What happens on the surface?

Rocksalt-type surface reconstruction

(104)hex -> (002)cubic

Zhang2018

D. Aksenov, Skoltech

Main question

Is surface reconstruction based on antisite pairs kinetically controlled or any thermodynamic driving force exists?

Make DFT+U atomic simulation neglecting the influence of electrolyte.

Formation energy of antisites

Very important type of defects in layered oxides, up to 10% in LiNiO₂, but much smaller in LiCoO₂

dE_{AS} = E(supercell with antisite) - E (ideal supercell)

Siman code: creating antisite defects

In [12]: NCO = smart_structure_read('geo/POSCAR_NaCoO2')
 create_antisite_defect(NCO, 'Na', 'Co', max_sep = 6, iatom = 1)

-- List of antisites:

No.	Antisite	e type	at1	at2	Separation, A
0	(0, 32)		2	35	3.091
1	(0, 32)		2	34	4.247
2	(0, 32)		2	33	5.15

Antisite pairs formation energies

Phase	space group	AS energy
LiNiO ₂	R-3m	– 0.8 eV
LiCoO ₂	R-3m	1.9 eV
NaNiO ₂	C2/m	2.1 eV
NaCoO ₂	R-3m	2.9 eV

Negative antisite formation energy for LiNiO₂!

May be the problem with LiNiO₂ space group?

- LiNiO₂ is often reported in R-3m group, where all Ni-O bonds are fixed to 1.99 Å.
- However Jahn-Teller (JT) distortion and charge ordering of Ni³⁺ to Ni²⁺ and Ni⁴⁺ are possible with the reduction of energy

LiNiO₂ in P2/c with charge order is most stable

PHYSICAL REVIEW B 84, 085108 (2011)

Charge disproportionation and Jahn-Teller distortion in LiNiO₂ and NaNiO₂: A density functional theory study

Hungru Chen,^{*} Colin L. Freeman, and John H. Harding Department of Materials Science and Engineering, University of Sheffield, S1 3JD, United Kingdom (Received 24 March 2011; revised manuscript received 12 July 2011; published 19 August 2011)

Density functional theory calculations have been performed on three potential ground-state configurations of LiNiO₂ and NaNiO₂. These calculations show that, whereas NaNiO₂ shows the expected cooperative Jahn–Teller distortion (and therefore a crystal structure with C2/m symmetry), LiNiO₂ shows at least two possible crystal structures very close in energy (within 3 meV/formula unit): $P2_1/c$ and P2/c. Moreover, one of them (P2/c) shows charge disproportionation of the (expected) Ni³⁺ cations into Ni²⁺ and Ni⁴⁺. We discuss the implications of this complex ground state for the interpretation of the available electron and neutron structure data, its electronic and comple>

DOI: 10.11(

- Charge-disproport ionation of Ni³⁺ to Ni²⁺ and Ni⁴⁺
- According to our results the total energy reduced by 15 meV/atom

 1.5 eV for 100-atom cell!

26.05.2020

Mb

Antisite pairs formation energies

Phase	space group	AS energy	NN, sep, A
LiNiO ₂	P2/c	0.73 eV (0.75 [1])	1nn, 2.86 A
LiCoO ₂	R-3m	1.9 eV	1nn, 2.82 A
NaNiO ₂	C2/m	2.1 eV	2nn, 4.17 A
NaCoO ₂	R-3m	2.9 eV	2nn, 4.22 A

Chen, Hungru, James A. Dawson, and John H. Harding. "Effects of cationic substitution on structural defects in layered cathode materials LiNiO 2." *Journal of Materials Chemistry A2*, no. 21 (2014): 7988-7996.

D. Aksenov, Skoltech

Surface energy calculations

D. Aksenov, Skoltech

26.05.2020

&

Surface energies

$$\gamma = \frac{1}{2 \cdot A} \left[E_{\text{slab}} - N_{\text{Co}} \left(\varepsilon_{\text{b}} - \sum_{i} \Gamma_{i} \cdot \mu_{i} \right) \right]$$

 $\boldsymbol{\epsilon}_{_{b}}$ is energy of bulk cell, $\boldsymbol{\Gamma}_{_{i}}$ is excess of i atoms in the slab

Dependence on chemical potential ! phase diagram is required

Phase diagrams in chemical potential space

D. Aksenov, Skoltech

SIMAN: creating slabs with surfaces $1 | st = create_surface2(sc, [0, 0, 1])$ cut_thickness = 10, min_vacuum_size = 10, symmetrize = 0, $min_slab_size = 16$)

Surface energy (J/m²) of considered oxides

Surface	LiNiO ₂ (R-3m)	LiCoO ₂ (R-3m)	NaNiO ₂ (C2/m)	NaCoO ₂ (R-3m)
(001) ½ ML	0.65	1.2	1.35	1.35
(104)/ (10-1)	0.55	1.1	0.35	0.87

Considered surfaces, example of LiCoO₂

R-3m: non-polar (104), (110), (100), polar : (012), (003), (101), (111) C2/m: non-polar (104), (10-1), (100), (111), (10-2); polar - (003), (012), (110)

Dependence of surface energy on chemical potential

D. Aksenov, Skoltech

Wulff construction depending on chemical potential

Surface antisites

In Co-based oxides surface antisite pair is formed more easily, however the energy is still positive

- Influence of electrolyte?
- Kinetic control?
- Chemical composition change?

D. Aksenov, Skoltech

Outline

- 1. Motivation to study energy materials and introduction into battery components
- 2. Modeling of solid electrodes
- 3. Modeling of electrolytes and interfaces
- 4. High-throughput modeling

5. Few examples from our experience: OH defects in LiFePO₄, antisite defects in layered oxides, migration barriers in cathodes

Case study: migration barriers in cathodes

- **Ionic** and electronic conductivity of electrodes determines C-rate
- Ionic conductivity depends on diffusivity of cations
- Migration barrier should be less 0.3-0.4 eV

• Migration barrier can be calculated with Nudge elastic band method (NEB)

D. Aksenov, Skoltech

-1 0

Migration of Na in NaVP₂O₇

Drozhzhin, O.A., Tertov, I.V., Alekseeva, A.M., **Aksyonov, D.A.,** Stevenson, K.J., Abakumov, A.M. and Antipov, E.V., //. *Chemistry of Materials*, 2019

D. Aksenov, Skoltech

$\mathbf{KVPO}_{4}\mathbf{F}$ - new cathode materials developed by at MSU and Skoltech

- Relatively low cost
- Possible intercalation of Li, Na, and K
- High intercalation voltage 4 V
- Very high specific rate

75 % of initial capacity at 40C

Fedotov, Stanislav S., et al. "AVPO4F (A= Li, K): a 4 V cathode material for high-power rechargeable batteries." *Chemistry of Materials* 28.2 (2016): 411-415.
Migration in KVPO₄F (IS) and VPO₄F (DS)

D. Aksenov, Skoltech

26.05.2020

Fedotov, S. S., Samarin A.S., Nikitina V.N, **Aksyonov D.A.**, et al. // *Journal of Materials Chemistry A* 6, no. 29 (2018): 73/82 14420-14430.

NEB calculation in SIMAN

1 res('LiFePO4.n3Li1v1', 'ion_relax', [1,2,3,4,5], show = 'fomepp', analys_type = 'neb')

D. Aksenov, Skoltech

Three classes of cathodes are considered

Spinel, LiMn₂O₄

(a)

Olivine, LiFePO₄, LiMnPO₄

Tavorite, LiVPO₄F

Origin of migration barriers

- What is the origin of migration barrier in cathode materials ?
- Is there any difference between Li, Na and K migration?

Migration barriers with NEB method

Intercalated state -Vacancy migration

Deintercalated state interstitial migration

Local contributions to migration barrier

1.0 -

$$E_{DFT} = E_{site} + E_{lattice}$$
 - approximately

$$E_{site} = \sum Z_i / R_i + \sum \lambda_i exp(-R_i / \rho_i)$$

- R_i distance between each cation and migrating cation
- site electrostatic energy based on effective charges and Ewald summation
- λ_i and ρ_i are parameters for short range Born-Mayer repulsive interaction [Kunz1992]

Reaction coordinate (Å)

$$dE_{DFT} = E(S, DFT) - E(A, DFT)$$

 $dE_m = E_m(S) - E_m(A)$

For many cases it is equivalent to migration barrier

D. Aksenov, Skoltech

26.05.2020

Li FPO

Repulsive and electrostatic site energy

Change of repulsive energy vs dE(DFT)

Change of ES energy vs dE(DFT)

For K (MO omitted) and Na proportionality can be identified $R^2 = 0.6$

No correlation at all

Sum of repulsive and ES term vs dE (DFT)

$$\Delta E_{lattice} = \Delta E_{DFT} - \Delta E_{site}$$

D. Aksenov, Skoltech

Classical Interatomic potentials, $\Delta E_{site} + \Delta E_{lattice}$ (Pedone)

- Without potential parametrization, $R^2 = 0.6$
- Good quantitative description
- Spinel outliers are on line
- The lattice contribution is responsible for reducing energy at saddle point

Acknowledgments

PhD **A.Boev,** Belgorod State University

Dr. **S.Fedotov,** Skoltech

Prof. **A, Zhugayevych** Skoltech Prof. **K.Stevenson,** Skoltech

Prof. **A.Abakumov,** Skoltech

Thank you for your attention!