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Advanced Materials Modeling
Lecture of 21 april

Part A  
+ Spin, magnetism, spin-orbit coupling, spin-density functional theory
+ Forces, and brief introduction to density functional perturbation theory
+ Iterative techniques
+ Troubleshooting
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Spin, magnetism, 
spin-orbit coupling, 

spin-density functional
theory
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Spin Notion proposed by Uehlenbeck et Goudsmit   (1925)
to explain Stern and Gerlach experiment

Up Down

Intrinsic angular momentum

Behaves like an orbital moment, although with only two possible 
values of the z projection :  ms! ms  = ±1 2

No intrinsic angular momentum in classical mechanics, 
no correspondance principle …

Silver Ag = (Kr) + 4d10 5s1

silver atom flux
N

S
gradient of magnetic field

observation : two beams,
each with well-defined magnetic dipole

Intrinsic angular momentum
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Reminder : orbital momentum
• Vector property

Quantum eigenfunctions and eigenvalues

Discrete spectrum of 

In spherical coordinates
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Spinorial wavefunction: 2-component vector, called “spinor”

Ψ(r) = 
ψ ↑(r)
ψ ↓(r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   or  ψ (r,σ )

Representation based on vectors (wavefunction) and
matrices (operator) : intrinsic angular momentum cannot be
represented using spatially-dependent wavefunction

can take two “values”:        orσ ↑ ↓

α  = 1
0

⎛
⎝⎜

⎞
⎠⎟

   et  β  = 0
1

⎛
⎝⎜

⎞
⎠⎟

Other notation :       define

α ↑( )  = 1   α ↓( )  = 0  β ↑( )  = 0  β ↓( )  = 1

ψ (r,σ )=ψ ↑(r)α σ( ) +ψ ↓(r)β σ( )

Representation of spin
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N 2 = Ψ Ψ = ψ ↑(r) ψ ↓(r)( )* ψ ↑(r)
ψ ↓(r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ dr = ψ ↑(r)

2
+ ψ ↓(r)

2

∫ dr

Norm

Φ Ψ = ϕ↑(r) ϕ↓(r)( )* ψ ↑(r)
ψ ↓(r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ dr

= ϕ↑
* (r)ψ ↑(r) +ϕ↓

* (r)ψ ↓(r)∫ dr

Scalar product

Norm / scalar product
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Ψ(r) = 
ψ ↑(r)

0

⎛

⎝
⎜

⎞

⎠
⎟    

Most often : pure spin up wavefunctions, or pure spin
down wavefunctions

Ψ(r) = 
0

ψ ↓(r)
⎛

⎝
⎜

⎞

⎠
⎟    Explicitly or

Such pure spin-up or spin-down wavefunctions
are orthogonal to each others.
Correspond to different quantum states.

Simply using spin-up or spin-down wavefunctions
often referred to “scalar wavefunctions”, at variance
with “spinorial wavefunctions” or “spinors”

Pure spin-up or -down wavefunctions



AMM lecture 21 April Part A 8

Computation of electronic density, and also spin-
density.

Expectation value of electronic density at a point :

If not pure-up or -down wavefunctions ?

n(r) = ψ ↑(r)
2

+ ψ ↓(r)
2

Expectation value of the spin along z (spin-polarization)

sz (r) = ψ↑(r)
2
− ψ ↓(r)

2( ) !2
What about the x- or y- spin-polarization ?
Or expectation along any other direction ?
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Pauli matrices : spin along x, y, z + …
σ z = 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

σ x = 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

σ y = 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

sx (r) = ψ ↓
* (r)ψ ↑(r) +ψ ↑

* (r)ψ ↓(r)( ) !2 = Ψ+ (r)σ xΨ(r) !
2

sz (r) = ψ↑(r)
2
− ψ ↓(r)

2( ) !2 = Ψ+ (r)σ zΨ(r) !
2

sy(r) = iψ↓
* (r)ψ↑(r)− iψ↑

* (r)ψ↓(r)( ) !2 = Ψ+ (r)σ yΨ(r) !
2

Spin-polarization vector (expectation value):

Spin-density matrix : nαβ (r) =ψα
* (r)ψ β (r)

n(r) = n↑↑(r) + n↓↓(r) sz (r) = n↑↑(r)− n↓↓(r)( ) !2
Notation, often : n↑(r) ! n↑↑(r) n↓(r) ! n↓↓(r)

Warning. Potential notation conflict : σ is for or ,                      are Pauli matrices  ↑ ↓ σ x ,σ y ,σ z
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Â Ψ  = 

Â↑↑ ψ ↑ + Â↑↓ ψ ↓

Â↓↑ ψ ↑ + Â↓↓ ψ ↓

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ŝz = 

!
2

1̂ 0

0 − !
2

1̂

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= !
2
σ z1̂

Generalization for x and y or other directions using Pauli matrices

 
Ŝz α = !

2
α  

 
Ŝz β =- !

2
β  

Simple example (simple, because spatial part = unit operator)   :

 

Â = 
Â↑↑ Â↑↓

Â↓↑ Â↓↓

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  where are operators acting
in usual Hilbert space (=spatial part)

Â↑↑,  Â↑↓,  Â↓↑,  Â↓↓

Operators acting on spinors
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Classical mechanics: for a particle rotating around origin,
with mass M and charge q : 

Placed inside a magnetic field,     
a magnetic dipole acquire an energy

L = Mr × vAngular momentum
Magnetic momentum µ = q

2
r × v

yields µ = q
2M

L

B
Eint = −µ.B

Classical treatment of a magnetic field
Now, how does spin relates to magnetic dipole ?
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+ Correspondance principle

Suppose a magnetic field along z.
For an electron (charge q=-e , mass      ), observable
values for the projection of magnetic moment along z are

 
Eint = −µz .Bz =

e
2me

m!Bz =
e!

2me

mBz = µBmBz

 
µz = −

e
2me

Lz = −
e

2me

m!

Energy change  (first approximation) 

Definition of ‘Bohr magneton’
 
µB =

e!
2me

me

where m = magnetic quantum number  (integer)

Quantum treatment of a magnetic field
µ = q

2M
L ⇒ µ̂ = q

2M
L̂
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1s

2p

Atomic levels of same n and     , but different m, 
are not degenerate anymore  in a magnetic field

 ℓ

Zeeman effect : lifting the degeneracy

Without magnetic field

With magnetic field
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Classical relation between orbital moment 
and magnetic moment : 

g-factor :

There exists also a spin magnetic moment, but the 
proportionality coefficient is not the same :

ge ≅ 2

Intrinsic magnetic moment

µ̂ = q
2M

L̂

µ̂ s = ge
(−e)
2me

Ŝ

Eint = −µz .Bz = gee
2me

m!Bz = e!
2me

gemBz = µBgemBz

If gradient of B,
a force appears
=> Stern-Gerlach exp !
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Classically, magnetic dipoles interact with each others. 
(magnetic dipole induces a magnetic field, felt by the other dipole)
Magnetic dipole from orbital movement interacts with spin magnetic dipole :

ESOC ∝L.S
Atomic case : degeneracies are lifted.
Example :   p levels  mℓ = −1,0, +1 ms = −

1
2

, +
1
2

pm =−1,↑ , pm =−1,↓ , pm = 0 ,↑ , pm = 0 ,↓ , pm = +1,↑ , pm = +1,↓{ }
Due to SOC, 6-fold degeneracy becomes doublet+quadruplet

mj = −
3
2

,− 1
2

, 1
2

, 3
2

mj = −
1
2

, 1
2

j =
1
2

with j =
3
2

with

Spin-orbit (SOC) coupling (I)

 
mj! = mℓ! + ms!

p1/2 − p3/2 splitting
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Theory : originates from relativistic corrections (Schrödinger to Dirac Eq.) 
Mass-velocity + Darwin term  

= modification of kinetic energy and potential
Spin-orbit interaction

= new type of term 

Close to a nucleus, with an energy modif proportional to Z 4

Note : vanishes for s electronic states ℓ = 0

Often NOT taken into account in 
first-principles calculations, except 
for electronic properties. Needs
spinorial wavefunctions, increase 
of CPU time > 4.

Incomplete p-shell

Z=78 ... 83

splitting in Bi is about 1.5 eV6p1 2-6p3 2

Spin-orbit interaction (II)

ESOC = − e!
2mec

⎛
⎝⎜

⎞
⎠⎟
σ. ∇V × p

mec
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

ESOC ∝L.S

σ = vector of
Pauli matrices
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In principle, exact functional is still a functional of density only !

Exchange-correlation functionals

Exc
DFT n[ ] = n(r)εxc

DFT(r;n)∫ dr
However, information on density + spin gives better approximate functionals.
“Spin-density functional theory” (SDFT). 

If spin-orbit coupling is ignored, most materials have either no
spin-polarization (nowhere in space), or their spin-polarization is aligned with
only one direction (chosen as z), everywhere in space. 
The latter gives the collinear case :

Exc
SDFT,non-coll n,s[ ] = n(r1)εxc

SDFT,non-coll (r;n,s)∫ dr

O. Gunnarsson and B.I. Lunqvist, Phys. Rev. B 13, 4274 (1976)

Exc
SDFT,coll n↑,n↓⎡⎣ ⎤⎦ = n(r)εxc

SDFT,coll (r;n↑,n↓ )∫ dr

If spin-orbit coupling is taken into account, either there is no spin-polarization
(nowhere in space), or spin-polarization is not constrained to be aligned.
The latter gives the non-collinear case :
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Exchange-correlation potentials
Generalisation of Kohn-Sham equations :

Ψ i

VKS(r) = Vext (r) + n(r1)
r1 - r∫ dr1 +

δExc
SDFT, non-coll n,s[ ]

δn(r)

Bxc,j (r) =
δExc

SDFT, non-coll n,s[ ]
δ s j (r)

Collinear case :  pure spin-up or spin-down wavefunctions

Non-collinear case : spinorial wavefunctions

− 1
2
∇2 + VKS,α (r)⎛

⎝⎜
⎞
⎠⎟ψ iα (r) = ε iαψ iα (r) α =↑ or ↓

VKS,α (r) = Vext (r) + n(r1)
r1 - r∫ dr1 +

δExc
SDFT, coll n↑,n↓⎡⎣ ⎤⎦
δnα (r)

i and α label the states

j = x, y, z

− 1
2
∇2 + VKS(r) + !

2
Bxc(r).σ⎛

⎝⎜
⎞
⎠⎟ Ψ i (r) = ε i Ψ i (r)

ψ i
α

i labels the states

Spin-dependent XC potential

XC magnetic field
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LDA, GGA, hybrids : can easily be generalized.

Approximate XC functionals

E.g. Local spin-density approximation for the collinear case :

Exc
LSDA n↑,n↓⎡⎣ ⎤⎦ = n(r)εxc

LSDA(n↑(r),n↓(r))∫ dr

Moreover, exchange energy in collinear case has simple general 
relationship with unpolarized exchange energy :

εxc
LSDA(n↑(r),n↓(r)) parameterized from homogeneous electron gas 

G.L. Oliver and J.P. Perdew, Phys. Rev. A 20, 397 (1979)

Ex
SDFT,coll n↑,n↓⎡⎣ ⎤⎦ = 1

2
Ex

DFT 2n↑⎡⎣ ⎤⎦ + Ex
DFT 2n↓⎡⎣ ⎤⎦( )

For non-collinear case, neglect directional dependence 
of local spin-polarization => falls back to collinear case.

Indeed, comes from separate contribution of spins to exchange energy: 

Ex = − 1
2 σ
∑ dr dr'∫

i, j

occ

∑ ψ jσ
* (r')ψ iσ

* (r')ψ jσ (r)ψ iσ (r)
r − r
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Materials are treated within one of the following methodologies: 
(1) No spin-polarization, scalar wavefunctions

(Many metals/covalent/ionic solids with light nuclei)

(2) No spin-polarization, spinorial wavefunctions (spin-orbit coupling)
(Many metals/covalent/ionic solids with heavier nuclei ;
the spin-polarization vanishes because of non-broken 
time-reversal (TR) symmetry, compensation from TR symmetric states)

(3) Collinear spin, different spin-up and spin-down wavefunctions
(Ferromagnetic materials with light nuclei, finite systems with net spin,
in particular open shell atoms, and paramagnetic molecules, if light nuclei)

(4) Collinear spin, antiferromagnetic case
(Specific materials, often oxydes – the spin-down density
is space-symmetric to the spin-up density – spin-polarization does not vanish)

(5) Non-collinear spin-polarization
(Heavy nuclei with magnetization, need TR symm. spontaneously broken,
also important for some properties like the magnetocrystalline field,
or spin diffusion)

In practice … ?

Methodologies : spin+symmetry
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(1) No spin-polarization, scalar wavefunctions
nspinor=1   nspden=1    nsppol=1

(2) No spin-polarization, spinorial wavefunctions (spin-orbit coupling)
nspinor=2    nspden=1    nsppol=1

(3) Collinear spin, different spin-up and spin-down wavefunctions
nspinor=1   nspden=2     nsppol=2

(4) Collinear spin, antiferromagnetic case
nspinor=1   nspden=2     nsppol=1

(5) Non-collinear spin-polarization
nspinor=2   nspden=4     nsppol=1

In practice … ? 
ABINIT input variables nspinor, nspden, nsppol . Also spinat(3,natom). 

Methodologies : spin+symmetry
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Example : electronic structure of Bismuth

splitting is 
about 1.5 eV

6p1 2-6p3 2

Xe + 4 f( )14 5d( )10 6s( )2 6 p( )3
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Electronic structure of III-V & II-VI compounds
III-V and II-VI compounds : important for opto-electronic applications
(light-emitting diodes, IR and visible photodetectors, solid state lasers)

Crystalline structure : tetrahedrally coordinated
(zinc-blende -AlP,AlAs,AlSb,BN,BP,CdTe,GaAs,HgSe,HgTe,InAs,InP,InSb,ZnS ;
or wurtzite - AlN,GaN,InN,CdS,CdSe,CdTe, ZnO,ZnS )

ZB Band structure in the vicinity of the       point (zone center) : Kane model

Kane model
Band structure of several III-V and II-VI compounds near k=0. 
E=0 : top of the valence band 
E = Eg : bottom of the conduction band.  
4 bands : 
heavy hole (hh) band, light hole (lh) band, spin-orbit hole (so) 
band, and electron (e) band. 
Two optical transitions are indicated. 
Transitions can also take place between spin-orbit hole band 
and conduction band, but are not shown for the sake of clarity. 
Δ ranges from <0.1 eV to 0.33 eV for GaAs and 0.8 eV for InSb
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Role of XC functional : the case of Iron

T.C. Leung, C.T. Chan and B.N. Harmon , Phys. Rev. B 44, 2923 (1991)

Total energy as a function of volume 
per atom for Iron.

Dashed lines : Spin-LDA
Full lines : GGA

P = paramagnetic  (no spin-polarization)
F = ferromagnetic 
AF = antiferromagnetic

FCC= face-centered cubic
BCC= body-centered cubic

The GGA gets the correct phase : 
Experimentally Fe is ferromagnetic BCC.
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Time-reversal operator in the scalar case
Many-body electronic Hamiltonian : invariant upon time-reversal symmetry. 

Ĥel ,T̂⎡⎣ ⎤⎦ = 0

ĤKS Ψ i = ε i Ψ i

If Kohn-Sham Hamiltonian is invariant upon time-reversal symmetry, and if 

then T̂ĤKST̂ Ψ i = ε i Ψ i

with time-reversal operator = simply taking the complex conjugate  T̂
(Think to time-dependent Schrödinger equation                                           )Ĥ Ψ i (t) = i! ∂

∂t
Ψ i

T̂ 2 = 1̂ T̂ −1 = T̂ Ĥel ,T̂⎡⎣ ⎤⎦ = 0 ⇒ T̂ĤelT̂ = T̂T̂Ĥel = Ĥel

ĤKS T̂ Ψ i( ) = ε i T̂ Ψ i( )
which means T̂ Ψ i also eigenfunction, with same eigenenergy than              .   Ψ i
Scalar wavefunctions in periodic boundary conditions and planewave basis

ψ k (r) = NΩ0( )-1/2 uk (G)
G
∑  ei(k+G)r

T̂ψ nk (r) =ψ nk
* (r)=ψ n '−k (r)

Upon time-reversal:     invariant,                   , while       is reversed r̂ r̂T̂ = T̂ r̂ p̂ p̂T̂ = −T̂ p̂

εnk (r)=εn '−k (r)Then there exists n’ such that 
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Time-reversal and spin
σ z = 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

σ x = 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

σ y = 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

σ y not invariant upon complex conjugation. Problem with time-reversal symmetry ?

Invariance under complex conjugation AND exchange of spin-up and spin-down.
Time-reversal symmetry exchange spin up and spin down (=angular momentum).

εnk (r)=εn '−k (r)

ĤSOC = − e!
2mec

⎛
⎝⎜

⎞
⎠⎟
σ. ∇V × p̂

mec
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

If Kohn-Sham Hamiltonian including SOC is invariant upon time-reversal symmetry, 
and if 

ĤKS

ψ ↑nk (r)
ψ ↓nk (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= εnk

ψ ↑nk (r)
ψ ↓nk (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Then there exists n’ such that 

and ψ ↓nk
* (r)

−ψ ↑nk
* (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
ψ ↑n '−k (r)
ψ ↓n '−k (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

is the corresponding eigenfunction.
= Kramers degeneracy

moreover,       changes signp̂
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Time-reversal symmetry forbids spin polarization

ψ ↓nk
* (r)

−ψ ↑nk
* (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Compute expectation value of spin polarization from a pair of degenerate
Kramers eigenfunctions :

ψ ↑nk (r)
ψ ↓nk (r)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

and

sx (r) = −ψ ↑nk (r)ψ ↓nk
* (r)−ψ ↓nk (r)ψ ↑nk

* (r)( ) !2

sz (r) = 0sy(r) = 0

s j (r) = Ψ+ (r)σ jΨ(r) !
2

Reminder

+ ψ ↑nk
* (r)ψ ↓nk (r) +ψ ↓nk

* (r)ψ ↑nk (r)( ) !2 = 0

This gives

Similarly : and 

So, how can a material be magnetic ?
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Spontaneous breaking of time-reversal symmetry

Magnetization order parameter Magnetization order parameter

Spin-polarization vanishes,
Time-reversal symmetry not broken
Non-magnetic, possibly spin texture

Spin-polarization does not vanish
Time-reversal symmetry broken
Magnetic materials

Ground state Ground state
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Computing the forces 
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Solve self-consistently the Kohn-Sham equation

Ĥ ψn  = εn ψn

n(r) = ψn
* (r)ψn (r)

n

occ
∑

Ĥ =T̂+ V̂+V̂Hxc[n]

with

Eel ψ{ }  = ψn T̂+ V̂ ψn
n

occ
∑ +EHxc[n]

V̂(r) =  - Zκ

r-Rκκ
∑

or minimize

ψ n (r)

n(r)

Ĥ

δmn  = ψm ψn for m,n ∈occupied set

Basic equations in DFT

Exchange-correlation functional might be LDA, GGA (e.g. PBE, PBESol), 
or hybrids, van der waals, etc
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Computing the forces (I)
Born - Oppenheimer approx.  ➱ find electronic ground state in potential 
created by nuclei. 

A starting configuration of nuclei  {      } is  usually NOT in equilibrium 
geometry. 

(principle of virtual works)

Forces are first derivatives of total energy.
Can be computed by finite differences.

Better approach : compute the response to a perturbation

➱ What is the energy change ?

Small parameter

Fκ,α  = - ∂E
∂Rκ ,α Rκ{ }

Rκ

Rκ,α{ }  →  Rκ,α  + λδRκ,α{ }
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Computing the forces (II)
To simplify, let's compute the derivative of an electronic eigenvalue

Perturbation theory : Hellmann - Feynman theorem

dεn
dλ

 = d
dλ

ψn Ĥ ψn( )

dψn
dλ

not needed !

= ψn
(0) dĤ

dλ
ψn

(0)

dψn
dλ

ψn + ψn
dψn
dλ

= d
dλ

ψn ψn = d
dλ

(1) = 0

= dψn
dλ

Ĥ ψn + ψn
dĤ
dλ

ψn + ψn Ĥ dψn
dλ

Indeed

= dψn
dλ

εn ψn + ψn
dĤ
dλ

ψn + ψn εn
dψn
dλ

εn(λ) normalizedψn(λ)Ĥ(λ) Ĥ ψn = εn ψn for all  λ
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Computing the forces (III)

∂εn
∂Rκ ,α

= ψn
∂Ĥ

∂Rκ,α
ψn = ∂V! ext (r)

∂Rκ ,α∫ n(r)dr

Application to the derivative of
with respect to an atomic displacement :

H!  = T!  + V! ext {R!} ⇒  ∂H!

∂Rκ ,α
 = ∂V! ext

∂Rκ ,α
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Generalisation to density functional theory

Reminder :

If change of atomic positions ...

(can be generalized to pseudopotential case)

E[ψ ] = ψn T̂ ψn
n
∑  + n(r)∫  Vext (r)dr + EHxc[n]

Vext (r) =  − Zk
r − Rkk

∑

∂Vext (
!r )

∂Rk,α
 = + Zk

r − Rk
2  . 

∂ r − Rk

∂Rk,α
= - Zk

r − Rk
3  .  r − Rk( )α

∂E
∂Rk,α

 = n(r) ∂Vext (r)
∂Rk,α

dr = −  n(r)
r − Rk

3  . (r − Rk )α dr∫∫

Computing the forces (IV)

Forces can be computed directly from the density !
Also, similarly, stresses.
=> Optimization of geometry (lattice parameters and atomic positions) 
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Density Functional Perturbation Theory
Many physical properties = derivatives of total energy 
(or suitable thermodynamic potential) with respect to perturbations.
Consider :

•  atomic displacements (phonons)
•  dilatation/contraction of primitive cell
•  homogeneous external field (electric field, magnetic field ...)

Derivatives of total energy (electronic part + nuclei-nuclei interaction) :
1st order derivatives : forces, stresses, dipole moment ...
2nd order derivatives : dynamical matrix, elastic constants, dielectric susceptibility

atomic polar tensors or Born effective charge tensors 
piezoelectricity, internal strains ...

3rd order derivatives : non-linear dielectric susceptibility, Raman susceptibilities
electro-optic effect, phonon - phonon interaction, Grüneisen parameters, ...

Further properties obtained by integration over phononic degrees of freedom :
entropy, thermal expansion, phonon-limited thermal conductivity ...
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Iterative algorithms,
troubleshooting
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Algorithmics : problems to be solved
(1) Kohn - Sham equation

Size of the system                 [2 atoms…    600 atoms…]  + vacuum ?
Dimension of the vectors          300…         100 000…             (if planewaves)
# of (occupied) eigenvectors       4…             1200…

(2) Self-consistency

(3) Geometry optimization
Find the positions          of ions such that the forces         vanish

[ = Minimization of energy ]

Current practice : iterative approaches

−
1
2
∇2 + VKS(r)⎡

⎣⎢
⎤
⎦⎥
ψ i (r) = εiψ i (r)

rj{ }G j{ }

� 

A x i = λi x i

� 

x i

VKS(r) ψ i (r)

n(r)

Rκ{ } Fκ{ }
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The �steepest-descent� algorithm

=> Iterative algorithm. 
Choose a starting geometry, then a parameter       , 
and iterately update the geometry, following the forces :  

Forces are gradients of the energy : moving the atoms
along gradients is the steepest descent of the energy surface.

� 

λ

Equivalent to the simple mixing algorithm 
of SCF (see later) 

� 

Rκ ,α
(n +1) = Rκ ,α

(n) + λFκ ,α
(n)
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Energy+forces around equilib. geometry 

Analysis of forces close to the equilibrium geometry, 
at which forces vanish, thanks to a Taylor expansion :

Moreover,

Vector and matrix notation

Let us denote the equilibrium geometry as 

� 

Rκ ,α
*

� 

Rκ ,α
* → R*

� 

Rκ ,α → R

� 

Fκ ,α → F

� 

∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

→ H� 

∂Fκ ',α '

∂Rκ ,α
= − ∂ 2EBO

∂Rκ ,α∂Rκ ',α '

� 

Fκ ,α = − ∂EBO

∂Rκ ,α

(the Hessian)

� 

Fκ ,α (Rκ ',α ' ) = Fκ ,α (Rκ ',α '
* ) + ∂Fκ ,α

∂Rκ ',α 'κ ',α '
∑

R*{ }
Rκ ',α ' −Rκ ',α '

*( ) + O Rκ ',α ' −Rκ ',α '
*( )2
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Steepest-descent : analysis (I)

Analysis of this algorithm, in the linear regime :

� 

Rκ ,α
(n +1) = Rκ ,α

(n) + λFκ ,α
(n)

� 

F(R) = F(R*) −H R −R*( ) + O R −R*( )2

� 

R(n +1) = R(n) + λF(n)

� 

R(n +1) −R*( ) = R(n) −R*( )− λH R(n) −R*( )

� 

R(n +1) −R*( ) = 1− λH( ) R(n) −R*( )
For convergence of the iterative procedure, the "distance"
between trial geometry and equilibrium geometry must decrease. 
1) Can we predict conditions for convergence ?
2) Can we make convergence faster ?

Need to understand the action of 
the matrix (or operator)  

� 

1− λH
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What  are the eigenvectors and eigenvalues of           ? 

symmetric, 
positive definite matrix  

The coefficient of         is multiplied by 1- hi

� 

H

� 

H

� 

= ∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

� 

H f i = hi f i f i{ }
Discrepancy decomposed as 

� 

R(n) −R*( ) = ci
(n)

i
∑ f i

� 

R(n +1) −R*( ) = 1− λH( ) ci
(n)

i
∑ f i = ci

(n)

i
∑ 1− λhi( )f iand

� 

f i

Iteratively :

� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

λ

where        form a complete, orthonormal, basis set

Steepest-descent : analysis (II)
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Yes ! If       positive, sufficiently small ...

positive definite   =>  all hi are positive

Is it possible to have  |1- hi| <  1 , for all eigenvalues ?

� 

H
� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

The size of the discrepancy decreases if |1- hi| <  1 λ

λ

λ

Steepest-descent : analysis (III)
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The maximum of all |1- hi|  should be as small as possible.
At the optimal value of       , what will be the convergence rate ?
( = by which factor is reduced the worst component of                     ?  )

How to determine the optimal value of        ? 

As an exercise : suppose   h1 =   0.2
h2 =   1.0
h3 =   5.0

=>  what is the best value of       ?

+  what is the convergence rate  ?

� 

R(n) −R*( )

Hint : draw the three functions |1- hi| as a function of       . Then, find
the location of          where the largest of the three curves is the smallest. 

Find the coordinates of this point.

λ

λ
λ

λ

λ λ
λ

� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

Steepest-descent : analysis (IV)
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Minimise the maximum of |1- hi|

h1 =   0.2 |1- .0.2| optimum =>      = 5
h2 =   1.0 |1- . 1 | optimum =>      =  1
h3 =   5.0 |1- . 5 | optimum =>      = 0.2

?

0.2                   1  

1

h3
h2

h1

optimum =   |1- 0.2|    =   |1- 5|

1- . 0.2    =  -( 1- .5)

2 - (0.2+5)=0   =>      = 2/5.2

=  1 - 2. (0.2 / 5.2)

positive                  negative

Only  ~ 8% decrease of the error, per iteration ! Hundreds of iterations will 
be needed to reach a reduction of the error by 1000 or more.

λ

λ
λ
λ

λ
λ
λ

λ λ

λ λ

λ λ

µ

µ

λ

Note : the second eigenvalue does not play any role.
The convergence is limited by the extremal eigenvalues : if the parameter is too large, the 
smallest eigenvalue will cause divergence, but for that small parameter, the largest 
eigenvalue lead to slow decrease of the error...

Steepest-descent : analysis (V)
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The condition number
In general,      opt =  2 / (hmin + hmax)

opt =  2 / [1+ (hmax/hmin)] - 1  =  [(hmax/hmin) -1] / [(hmax/hmin) +1]

Perfect if hmax =   hmin .  Bad if hmax >>  hmin . 
hmax/hmin called the "condition" number.  A problem is "ill-conditioned" if the
condition number is large.  It does not depend on the intermediate eigenvalues.

Suppose we start from a configuration with forces on the order of 1 Ha/Bohr, and 
we want to reach the target 1e-4 Ha/Bohr. The mixing parameter is optimal.
How many iterations are needed ?
For a generic decrease factor                   , with "n" the number of iterations.

� 

F(n) ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

F(0)

� 

Δ ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

� 

n ≈ ln hmax hmin +1
hmax hmin −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−1

lnΔ ≈ 0.5 hmax hmin( )ln 1
Δ

(The latter approximate  
equality supposes a 
large condition number)

µ
λ

Δ
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Analysis of self-consistency

Natural iterative methodology   (KS : in  =>  out) :

Which quantity plays the role of a force, that should vanish at the solution  ?
The difference (generic name : a "residual")

Simple mixing algorithm 
( ≈ steepest - descent )

Analysis ...

Like the steepest-descent algorithm, this leads to the 
requirement to minimize |1- hi| where hi are eigenvalues of

(actually, the dielectric matrix)

vKS(r) ψ i (r)

n(r) vin (r)→ψ i (r)→ n(r)→ vout (r)

vout (r) − vin (r)

� 

vin
(n +1) = vin

(n) +λ vout
(n) − vin

(n)( )

� 

vout v in[ ] = vout v*[ ] + δvout

δvin

v in − v*( )

� 

H

� 

δvout

δvin
λ
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� 

F(R) = -H R - R*( )
� 

R(n +1) = R(n) +λ H-1( )approx
F(n)

R(n+1)-R*( )= 1 - λ H-1( )
approx

H( ) R(n)-R*( )
Notes : 1) If approximate inverse Hessian perfect, optimal

geometry is reached in one step, with       =1. 
Steepest-descent NOT the best direction.
2) Non-linear effects not taken into account. For geometry
optimization, might be quite large. Even with
perfect hessian, need 5-6 steps to optimize a water molecule.
3) Approximating inverse hessian by a multiple
of the unit matrix is equivalent to changing the         value.
4) Eigenvalues and eigenvectors of
govern the convergence : the condition number can be changed.

often called a "pre-conditioner".
5) Generalisation to other optimization problems is trivial. 
(The Hessian is referred to as the Jacobian if it is not symmetric.)

� 

H-1( )approx
H

� 

H-1( )approx

λ

λ

Modify the condition number (II) 
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Selfconsistent determination of the Kohn-Sham potential : 

Jacobian = dielectric matrix. 
Lowest eigenvalue close to 1.
Largest eigenvalue :
=  1.5 ... 2.5 for small close-shell molecules, and small unit cell solids
(Simple mixing will sometimes converge with parameter set to 1 !)
= the macroscopic dielectric constant (e.g. 12 for silicon),
forlarger close-shell molecules and large unit cell insulators,  
= diverge for large-unit cell metals, or open-shell molecules !

Model dielectric matrices known for rather homogeneous systems. 
Knowledge of approx. macroscopic dielectric constant

=> efficient preconditioner
Work in progress for inhomogeneous systems 

(e.g. metals/vacuum systems).

Approximate Hessian can be generated on a case-by-case basis.

Modify the condition number (III) 
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Advanced algorithms : using the history
Instead of using only previously computed forces,
take into account past forces for past positions

Large class of methods : 
- Broyden (quasi-Newton-type),
- Davidson, 
- conjugate gradients, 
- Lanczos ... 

+Approximate Hessian can be combined with usage of history

For geometry optimization : current practice 
Broyden ionmov 22     
First without cell relaxation optcell 0 
then optimizing the cell optcell 2 (or 1, or 3…9)
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Iterative algorithms always working ?
No ! 
Hypothesis of harmonic energy can be problematic
Many hard cases where iterations go on, without
reaching SCF convergence or vanishing forces / stresses.
Trade-off between speed and robustness.

N.D. Woods, M.C. Payne and P.J. Hasnip, J. Phys.: Condens. Matt. 31, 453001 (2019)

Example : test of 24 iterative algorithms/settings for a set of 56 hard systems

ABINIT default algo+settings
similar to PULAY II (3)
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Iterative algorithms always working ?

SCF default iscf 7 or 17 
try changing iscf, diemac, dielng
is the solution of KS equation accuracte ? nline, nnsclo, tolrde

Geometry optimization default ionmov 22
try improving underlying SCF accuracy using tolrff, nstep
try changing ionmov
if optimizing primitive lattice vectors, beware about ecutsm, 
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Other troubleshooting ?

Problems with the initial geometry (cell, atom type, nuclei positions)
Many mistakes done by beginners !
Check the units (reminder : ABINIT uses atomic units by default)
Check whether natom is coherent with xred (or xcart)
Check that you have not switched atom types
Relax first the atomic positions at fixed primitive vectors before optimizing the 
cell. Read optcell documentation
ABINIT can read VASP POSCAR external files containing unit cell parameters 
and atomic positions. See the input variable structure.
Possibly try to visualize your input geometry using Abipy, VESTA, XCrysDEN,

see docs.abinit.org/tutorial/analysis_tools to produce .xsf files for 
XCrysDEN

Read ABINIT error messages !
Possibly also warnings and comments.
In log file, or in error file, or in the __ABI_MPIABORTFILE__ file if parallel

More on troubleshooting at
wiki.abinit.org/doku.php?id=howto:troubleshooting
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(1) gstate.F90   

(3) scfcv.F90    

(4) vtorho.F90  

(5) vtowfk.F90 

(6) cgwf.F90    

(7) getghc.F90 

(2) moldyn.F90

Ground-state

Molecular dynamics

Self-consistent field convergence

From a potential (v) to a density (rho)

From a potential (v) to 

a wavefunction at some k-point 

Conjugate-gradient on one wavefunction

Get the application of the Hamiltonian

ABINIT : levels in main processing unit
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An example run : tbase1_1
• First run in tutorial base1 (https://docs.abinit.org/tutorial/base1)

• Very quick                        (less than 1 sec)

• Look at   tbase1_1.files, tbase1_1.in, 01h.pspgth
• abinit < tbase1_1.files > log
• Look at tbase1_1.out       (such *.out file will usually be much longer)

• Look at log (such log file is mainly for finding errors or debugging )

• Issue:                               (-A3 might not be enough for more atoms)

grep –i –B1 –A3 ETOT tbase1_1.out
grep –i –A3 forces        tbase1_1.out
grep –i –A3 stress        tbase1_1.out
grep –i –A3 energy      tbase1_1.out
grep –i –A3 coordinates tbase1_1.out
grep –i –A3 density     tbase1_1.out
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Additional slides
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(without demonstration)
The exchange-correlation energy, functional of the density
is the integral over the whole space of the density times the 
local exchange-correlation energy per particle

while the local exchange-correlation energy per particle 
is the electrostatic interaction energy of a particle with 
its DFT  exchange-correlation hole.

Sum rule : 

Exc n[ ] = n(r1)ε xc (r1;n)∫ dr1

ε xc (r1;n)=
1
2

nxc (r2 r1;n)
r1 − r2

∫ dr2

nxc (r2 r1;n)∫ dr2 = −1

Exact result for exchange-correlation energy



AMM lecture 21 April Part A 57

Hypothesis :
- the local XC energy per particle only depend on the local density
- and is equal to the local XC energy per particle of an 

homogeneous electron gas of same density 
(in a neutralizing background - « jellium » )

   εxc
LDA(r1; n ) = εxc

hom( n(r1) )

Gives excellent numerical results ! Why ?

1) Sum rule is fulfilled

2) Characteristic screening length indeed depend on local density

Local density approximation (I)
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Actual function : exchange part + correlation part

with 

for the correlation part, one resorts to accurate
numerical simulations beyond DFT (e.g. Quantum Monte Carlo)

Corresponding exchange-correlation potential

ε x
hom (n) = Cn1/3 C = −

3
4π

3π 2( )1/3

µx (n) = C
4
3

n1/3 =
4
3
ε x

hom (n)

Vxc (r) =
δExc n[ ]
δn(r)

Vxc
approx (r) = µxc n(r)( ) µxc (n) =

d nε xc
approx (n)( )
dn

Local density approximation (II)
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Hund’s rule
Example: p levels

S total        1/2 1 3/2       1             1/2 0

favored over 

Indeed, density identical => Hartree energy identical
However, exchange energy more negative

Suppose frozen spherically symmetric effective potential
created by nuclei and core electrons

Ex = − 1
2 σ
∑ dr dr'∫

i, j

occ

∑ ψ jσ
* (r')ψ iσ

* (r')ψ jσ (r)ψ iσ (r)
r − r

favored over 

Indeed, density in the same orbital (same spatial location)
increase Hartree energy (also Ex energy less negative !)

EH n[ ] = 1
2

n(r1)n(r2 )
r1 - r2

∫ dr1dr2
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ABINIT + python : Abipy, Abitutorials …
ABINIT organization on GitHUB https://github.com/abinit

Abipy : python library for launching ABINIT jobs, 
and analysing/plotting the results       http://pythonhosted.org/abipy
=> e.g. connecting ABINIT with tools for high-throughput
calculations developed in the Materials Project context 
(like Pymatgen, Fireworks).
Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

http://www.youtube.com/watch?v=fBIEx_yRq-4
http://www.youtube.com/watch?v=fBIEx_yRq-4
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Advanced Materials Modeling
Lecture of 21 april

Part B
+ Many-body physics 
+ The total energy : Quantum monte Carlo
+ Experiments : total energy, band gap, spectroscopies ?
+ Charged excitations and Green’s function G
+ GW approximation (incl. self-consistency and miscellaneous tricks)



AMM lecture 21 April 2

Richard M. Martin, L. Reining, and D.M. 
Cepreley

Cambridge University Press, 2016

Interacting electrons: 

Theory and computational approaches 

(ISBN: 978-0-521)87150-1) 

A basic reference
on first-principles
simulations of
Interacting electrons
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Many-body physics
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Electronic Hamiltonian, in atomic units (without spin-orbit) :

• Born-Oppenheimer approximation.
• Nuclei are treated as distinct particles, without spin. Internal structure is 

neglected. Only charge, mass and (classical) position taken into account. 

Wavefunction : 
Ψe(r1,σ 1,r2,σ 2,...,rn ,σ n;R1,R2,…RN )

T̂e = −
∇ri

2

2i =1

n

∑ V̂ee = 1
ri − rji, j( )

i< j

(n,n)

∑V̂eN =
A

N

∑ −ZA

ri − RAi

n

∑

+ antisymmetry for electron exchange

Systems with n electrons and N nuclei

Ĥe = T̂e + V̂eN + V̂ee

Ĥe Ψe = Ee Ψe
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Classical objets : fields
or trajectories

p(r,t),V (r,t),T (r,t),E(r,t),...
R1(t),R2 (t),R3(t),...RN (t)

Quantum objects : wavefunctions
for interacting particles Ψ(r1,r2 ,r3,...,rN ,t)

Classical position and speed of 8 objects 
2x3x8=48 real numbers.

Oxygen atom : 8 electrons.
Quantum description, on a cubic grid of 10x10x10 
points.
24-dimensional object => 10   complex numbers

24

Many-body wavefunction representation

HF, DFT : set of wavefunctions for non-interacting particles

For the oxygen atom, back to 8x10x10x10 real numbers,
but with an approximate treatment ...
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(1) Arguments of wavefunction :

Ψe(r1,σ 1;r2,σ 2;...;rn ,σ n )

V̂ee =
1
riji, j( )

i < j

(n,n)

∑

Ψe(1 , 2 ,..., n )

“1” becomes a symbol to denote
(2) Define also rij ! ri − rj

and “one-particle” part of Hamitonian

ĥN (i) ! −
∇ri

2

2
+ V̂N (ri )

ĥN

i

n

∑ (i) + 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = Ee Ψe(1,2,..., n )

Simplified notations

V̂eN =
A

N

∑ −ZA

riAi

n

∑ =
i

n

∑ V̂N (ri )

r1,σ 1

Hamitonian becomes :
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Interelectronic coupling does not
allow to separate electronic coordinates

ĥN

i

n

∑ (i) + 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = Ee Ψe(1,2,..., n )

Mean-field approximation (like DFT)

Separation of variables

1
riji, j( )

i< j

(n,n)

∑ replaced by 
i
∑ V̂Hxc(i)

ĥMF
N

i

n

∑ (i)⎛
⎝⎜

⎞
⎠⎟
ΨMF ,e(1,2,..., n ) = EMF ΨMF ,e(1,2,..., n )

ĥMF
N (i) = ĥN (i) + V̂Hxc(i)

gives solutions as 
Slater determinants of 1-particle wavefunctions
mean-field energy=sum of 1-particle eigenenergies,
must be corrected to give electronic energy (avoid double-counting)

+ antisymmetry for electron exchange

+ antisymmetry for electron exchange
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ĥN

i

n

∑ (i) + 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = Ee Ψe(1,2,..., n )

Monte Carlo approaches

Variational Monte Carlo
Diffusion Monte Carlo
Diagrammatic Monte Carlo
Green’s function Monte Carlo
…

“Monte Carlo” refers to stochastic evaluation
of high-dimensional integrals using random sampling,
and generation of such samplings using random walks

Usually : target evaluation of the ground-state energy
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Monte Carlo approaches
(brief overview)
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ĤeΨe(1,2,..., n ) = ĥN

i

n

∑ (i) + 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = Ee Ψe(1,2,..., n )

Variational Monte Carlo (VMC)

Use the variational principle to approximate ground-state energy

Slater determinant,
antisymmetric upon 
electron exchange

Ψe,trial (1,2,..., n ) = f (rij )
i, j( )

i< j

(n,n)

∏
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
ΨSD (1,2,..., n )

Jastrow factor, symmetric upon 
electron exchange, builds-in
correlation between electrons
f tends to 1 at large separation,
and to zero at small separation

Simplest form of VMC : use trial wavefunctions of the type

Ee,GS = min Ψe Ĥ e Ψe < Ee,trial = Ψe,trial Ĥ e Ψe,trial
Ψe normalized

Jastrow-Slater
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Challenge : multi-dimensional integrals

Evaluation of Jastrow-Slater wavefunction energy expectation, 
then optimization of orbitals of Slater determinant and Jastrow factor ?

Ψe(1,2,..., n ) = f (rij )
i, j( )

i< j

(n,n)

∏
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
ΨSD (1,2,..., n )

No simple expression for the expectation value, 
unlike with Slater determinants 

Ψe,trial Ĥ e Ψe,trial with

and

Ĥe = T̂e + V̂eN + V̂ee

T̂e = −
∇ri

2

2i =1

n

∑ V̂ee = 1
ri − rji, j( )

i< j

(n,n)

∑V̂eN =
A

N

∑ −ZA

ri − RAi

n

∑

Ψe,trial Ĥ e Ψe,trial = ...∫ Ψe,trial
* (1,…N )ĤeΨe,trial

* (1,…N )d1∫ ...dN
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Stochastic evaluation

Standard multi (few) dimensional integration of dimention d :
sample with homogeneous grid of L points in each dimension,
with step h inversely proportional to L . 
Total number of points M=Ld

Convergence of Simpson rule error

Ψe,trial Ĥ e Ψe,trial = ...∫ Ψe,trial
* (1,…N )ĤeΨe,trial

* (1,…N )d1∫ ...dN

ε = (1 / L)4 = M −4/d

Random sampling ε = M −1/2
Better than fixed grid 
technique for d > 8 !
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Importance sampling
Sampling point distribution : generated from the trial wavefunction, to 
favour the configurations that have higher probability

Π(1…N ) =
Ψe,trial (1…N )

2

Ψe,trial (1…N )
2
d1…dN∫

Metropolis algorithm to generate a random walk in the multi-dimensional 
space                 for  i=1 … M, 
whose probability distribution tends to
by randomly generating new configurations and accepting/rejecting them

(1…N )i

Π(1…N )

Ψe,trial Ĥ e Ψe,trial = lim
M→∞

1
M

EL
i=1

M

∑ (1…N )i( )Then evaluate

where EL (1…N )( ) = Re
ĤeΨe,trial (1…N )
Ψe,trial (1…N )
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Diffusion Monte Carlo
Consider time-dependent Schrödinger equation in imaginary time

i! ∂
∂t

Ψe(t) = Ĥe Ψe(t) ⇒ − ! ∂
∂τ

Ψe(τ ) = Ĥe Ψe(τ )

Propagate initial trial wavefunction                              using such Eq.                        Ψe,trial (τ = 0)

Ĥe Ψ i = Ei Ψ iComplete set of eigenfunctions of Hamiltonian                       

Decomposition of                       Ψe,trial (τ = 0) = ci Ψ i
i=1
∑

Ψe,trial (τ ) = cie
−Eiτ Ψ i

i=1
∑

Solve imaginary-time Schrödinger equation                        Ψ i (τ ) = e−Eiτ Ψ i

Hence, in the large-time limit Ψe,trial (τ ) → Ψe,i=Ground State

Diffusion Monte-Carlo = generate a random walk using imaginary-time
Schrödinger equation 
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Accuracy of Quantum Monte Carlo
Variational Monte Carlo : 

quality of Energy estimate depends directly on trial wavefunction

Diffusion Monte Carlo : 
quality of Energy is partly dependent on trial wavefunction

Still not exact ! 
Indeed, the antisymmetry of the sampling of the random walk is
hard to maintain => fixed-node approximation (and fixed-node error)

VMC  H2
benchmark :
total 
energy
difference
wrt
numerically
exact results
With improved
Jastrow

NiO lattice parameter, cohesive energy
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Quantum Monte Carlo codes
QMCPACK

https://qmcpack.org
Jeongnim Kim et al , J. Phys.: Condens. Matter 30, 195901 (2018)

CASINO
https://vallico.net/casinoqmc
RJ Needs, MD Towler, ND Drummond and P Lopez Rios

J. Phys.: Condens. Matter 22, 195901 (2010)

https://qmcpack.org/
https://vallico.net/casinoqmc

