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Advanced Materials Modeling
Lecture of 24 april

+ Material properties as derivatives of total energy
+ Perturbations (adiabatic)
+ Ordinary quantum mechanics
+ Density Functional Perturbation Theory
+ Phonon band structures
+ Thermodynamical properties
+ Electron-phonon effects on electronic energies
+ Electron-phonon effects on transport properties
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Properties of solids from DFT

Computation of ...
interatomic distances, angles, total energies
electronic charge densities, electronic energies

A basis for the computation of ...
chemical reactions
electronic transport
vibrational properties
thermal capacity
dielectric response
optical response
superconductivity
surface properties
spectroscopic responses
...
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Changing atomic positions

EBO

Born-Oppenheimer approximation …

Close to the minimum : parabola
Govern small oscillations
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Restoring force: F(x) = −kx

CLassical mechanics

V (x) = 1
2
kx2Potential :

−kx = m
d 2x
dt 2

Solution  : x(t) = Asin(ωt) + Bcos(ωt)

with ω = k m

Harmonic oscillator
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Phonon frequencies from force constants

Fourier Transform (using translational invariance) :

Computation of phonon frequencies and eigenvectors =
solution of generalized eigenvalue problem

 
!Ckα,k'α '

"q( )  =  Ckα,k'α '
a'
∑ (0,a') ei"q.

"
Ra'

 
!Ckα,k'α '

k'α '
∑

"q( ).um"q (k'α ') = M k . ωm"q
2 . um"q (kα)

phonon displacement
pattern masses square of

phonon frequencies

How to get second derivatives of the energy ? 
Density Functional Perturbation Theory...

Cκα,κ'α ' a,a '( )  = ∂2EBO
∂Rκα

a ∂Rκ'α '
a'Matrix of interatomic force constants :



AMM lecture 24 April 6

Phonons : exp vs theory

Diamond

Zircon

XG, G.-M. Rignanese and R. Caracas. 
Zeit. Kristall. 220, 458-472 (2005)

Rignanese, XG and Pasquarello. Phys. Rev. B 63, 104305 (2001)

Phonons at zone center
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In addition of being able to compute derivatives of BO energy :

Treating phonons of different wavelengths ?

(Not only periodic ones)

Treating electric field ?

Electric field => linear potential,

incompatible with periodicity

Even for phonons at zero wavevector (Gamma),

treating LO-TO splitting

(longitudinal optic – transverse optic)

Challenges for periodic materials  ?
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Perturbations
(adiabatic)
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Why perturbations ?
Many physical properties = derivatives of total energy 

(or suitable thermodynamic potential) with respect to perturbations.

Consider :

•  atomic displacements (phonons)

•  dilatation/contraction of primitive cell

•  homogeneous external field (electric field, magnetic field ...)

Derivatives of total energy (electronic part + nuclei-nuclei interaction) :

1st order derivatives : forces, stresses, dipole moment ...

2nd order derivatives : dynamical matrix, elastic constants, dielectric susceptibility

atomic polar tensors or Born effective charge tensors 

piezoelectricity, internal strains ...

3rd order derivatives : non-linear dielectric susceptibility, Raman susceptibilities

electro-optic effect, phonon - phonon interaction, Grüneisen parameters, ...

Further properties obtained by integration over phononic degrees of freedom :

entropy, thermal expansion, phonon-limited thermal conductivity ...
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Perturbations
* Variation of energy and density around fixed potential

* Perturbations (assumed known through all orders) 

i.e. : to investigate phonons, parameter of perturbation 
governs linearly nuclei displacement, but change of
potential is non-linear in this parameter.

 

Eel λ( )  = ψα λ( ) T̂+V̂ext λ( ) ψα λ( )  + EHxc ρ λ( )⎡⎣ ⎤⎦
α,occ
∑

ρ(!r;λ) = ψα
∗ (!r;λ) ψα (

!r;λ)
α,occ
∑

V̂ext  λ( )= V̂ext
(0)  + λV̂ext

(1)  + λ2V̂ext
(2)  + ...

ΔVph (
!r ) = Vκ (

κ: nuclei+cell
∑

!r - (
!
Rκ
(0)+!uκ )) - Vκ (

!r - 
!
Rκ
(0) )

!uκ   =  λ  !eκ   cos(!q . 
!
Rκ
(0) )

small
parameter

‘polarisation’
of the phonon

phonon
wavevector
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How to get energy derivatives ?

* Finite Differences

Compare and

‘Direct’ Approach (Frozen phonons ... Supercells …)
[Note problem with commensurability] 

* Hellman - Feynman theorem  (for E(1))

Due to variational character :

In order to get E(1) we do not need (1)

E ψ;  Vext{ }

∂E
∂ψ

 = 0

dE
dλ

 = ∂E
∂Vext

∂Vext

∂λ
 + ∂E

∂ψ
 . ∂ψ

∂λ
 = ∂E

∂Vext
Vext

(1)

=

0 (1)

E' ψ ';  V'ext{ }

ψ
ψ

E = E(0)  + λE(1)  + λ2E(2)  + ... ψ  = ψ (0)  + λψ (1)  + λ2ψ (2)  + ... 
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*

*

Hypothesis : we know

through all orders, as well as

Should calculate : 

General framework of perturbation theory
A λ( )= A(0)  + λA(1)  + λ2A(2)  + λ3A(3)...

E ψ;  Vext{ }
Vext  λ( )= Vext

(0)  + λVext
(1)  + λ2Vext

(2)  + ...

(0) ,         , E(0)

E(1) , E(2) , E(3)...

ψα
(1) , ψα

(2) , ψα
(3)  ...

εα
(1) ,  εα

(2) ,  εα
(3)  ...

ρα
(1) ,  ρα

(2) ,  ρα
(3)  ...

2nd order derivatives of BO energy :         
dynamical matrix, dielectric susceptibility, 
elastic constants, … 

ψ ρα
(0)

will be needed for
T-dependence of 
electronic structure
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Ordinary quantum 
mechanics
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Perturbation theory for ordinary quantum mechanics

Hamiltonian supposed known through all orders

Ĥ = Ĥ (0)+ λĤ (1)+ λ2Ĥ (2)+... = λnĤ (n)

n
∑

(Ĥ - εα ) ψα  = 0          (Schrödinger  equation)       

ψα ψα  = 1                  (normalisation condition)

ψα Ĥ - εα ψα  = 0

or    εα  =  ψα Ĥ ψα    (expectation value)



AMM lecture 24 April 15

Suppose

with

Expand Schrödinger equation:

Ĥ(λ) ψ n(λ)  = εn(λ)ψ n(λ)       valid for all λ

Perturbation expansion of Schrödinger equation

Ĥ(0) ψ n
(0)  + λ  Ĥ(1) ψ n

(0)  + Ĥ(0) ψ n
(1)( )  + λ2  Ĥ(1) ψ n

(1)  + Ĥ(0) ψ n
(2)( )  + ...

=  εn
(0)  ψ n

(0)  + λ  εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)( )+ λ2  εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)( )+ ...

Ĥ(λ)  =  Ĥ(0)  + λ  Ĥ(1)

ψ n (λ) = ψ n
(0)  + λψ n

(1)  + λ2ψ n
(2)  + ...

εn (λ) = εn
(0)  + λ  εn

(1)  + λ2εn
(2)  + ...



AMM lecture 24 April 16

If     = 0, one gets                                                              no surprise …

Derivative with respect to        , then       = 0   (=first order of perturbation)

=>

2 derivatives with respect to     , then     = 0  (=second order of perturbation)

=>

Ĥ(0) ψ n
(0)  + λ  Ĥ(1) ψ n

(0)  + Ĥ(0) ψ n
(1)( )  + λ2  Ĥ(1) ψ n

(1)  + Ĥ(0) ψ n
(2)( )  + ...

=  εn
(0)  ψ n

(0)  + λ  εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)( )+ λ2  εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)( )+ ...

Ĥ(0) ψ n
(0)  = εn

(0) ψ n
(0)

Ĥ(1) ψ n
(0)  + Ĥ(0) ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0) ψ n

(1)

Ĥ(1) ψ n
(1)  + Ĥ(0) ψ n

(2)  = εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)

Perturbation expansion of Schrödinger equation

λ

λ λ

λ λ
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with

Same technique than for Schrödinger equation, one deduces : 

∀λ  : ψ n (λ) ψ n (λ)  = 1If

ψ n
(0) ψ n

(0)  = 1

ψ n
(1) ψ n

(0)  + ψ n
(0) ψ n

(1)  = 0

ψ n
(2) ψ n

(0)  + ψ n
(1) ψ n

(1)  + ψ n
(0) ψ n

(2)  = 0

ψ n (λ) = ψ n
(0)  + λψ n

(1)  + λ2ψ n
(2)  + ...

Perturbation expansion of the normalisation

no surprise …
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Ĥ(1)  ψ n
(0)  + Ĥ(0)  ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0)  ψ n

(1)

Hellmann & Feynman theorem :
Start from first-order Schrödinger equation

Premultiply by

So : = Hellmann & Feynman theorem

• and          supposed known

• not needed

• = expectation of the Hamiltonian for the non-perturbed wavef.

ψ n
(0) εn

(0)

ψ n
(0)

ψ n
(0) Ĥ(1) ψ n

(0)  + ψ n
(0) Ĥ(0) ψ n

(1)  = εn
(1) ψ n

(0) ψ n
(0)  + εn

(0) ψ n
(0) ψ n

(1)

= = 1

εn
(1)  = ψ n

(0) Ĥ(1) ψ n
(0)

ψ n
(0) Ĥ(1)

ψ n
(1)

ψ n
(0) Ĥ(1) ψ n

(0)

εn
(1)      OK !

εn
(1)
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Start from second-order Schrödinger equation

Premultiply by

Second-order derivative of total energy

ψ n
(0)

Ĥ(1) ψ n
(1)  + Ĥ(0) ψ n

(2)  = εn
(2) ψ n

(0)  + εn
(1) ψ n

(1)  + εn
(0) ψ n

(2)

εα
(2)  =  ψα

(0) Ĥ (1)- εα
(1)  ψα

(1)  or    εα
(2)  =  ψα

(1) Ĥ (1)- εα
(1)  ψα

(0)

Both can be combined :

εα
(2)  = 1

2
 ψα

(0) Ĥ (1)- εα
(1) ψα

(1)  + ψα
(1) Ĥ (1)- εα

(1) ψα
(0)( )

and,  using ψn
(1) ψn

(0)  + ψn
(0) ψn

(1)  = 0 

       =  1
2

ψα
(0) Ĥ (1) ψα

(1)  + ψα
(1) Ĥ (1) ψα

(0)( )
No knowledge of           is needed, but needs           !  How to get it ?ψα

(2) ψα
(1)

εα
(2)
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In search of
Again first-order Schrödinger equation :

Terms containing are gathered :

Equivalence with matrix equation (systeme of linear equations)

usually solved by if          exist.

ψ n
(1)

A . x  =  y

Ĥ(1)  ψ n
(0)  + Ĥ(0)  ψ n

(1)  = εn
(1) ψ n

(0)  + εn
(0)  ψ n

(1)

known known

Ĥ(0)  - εn
(0)( )  ψ n

(1)  =  - Ĥ(1)  - εn
(1)( )  ψ n

(0) (called Sternheimer equation)

x  =  A-1 y A-1

ψ n
(1)
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Generalisation: 
Density-functional 
perturbation theory 

(DFPT)
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Basic equations in DFT
Solve self-consistently Kohn-Sham equation

Ĥ ψn  = εn ψn

 
n(!r ) = ψn

* (!r )ψn (
!r )

n

occ
∑

Ĥ =T̂+ V̂+V̂Hxc[n]

What is         ? V̂

Eel ψ{ }  = ψn T̂+ V̂ ψn
n

occ
∑ +EHxc[n]

V̂(!r) =  - Zκ
!r-
!
Rκ
aaκ

∑

or minimize

ψ n (r)

n(r)

Ĥ

δmn  = ψm ψn for m,n ∈occupied set
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Basic equations in DFPT
Solve self-consistently Sternheimer equation

(Ĥ (0)-εn
(0) ) ψn

(1)  = - (Ĥ (1)-εn
(1) ) ψn

(0)

 
n(1)(!r ) = ψn

(1)*(!r )ψn
(0)(!r )+ψn

(0)*(!r )ψn
(1)(!r )

n

occ
∑

Ĥ (1)  = V̂ (1)+ δ2EHxc
δρ(r)δρ(r') n

(1)(r')dr'∫

εn
(1)  = ψn

(0) Ĥ (1) ψn
(0)

What is         ,           ? V̂ (1)
 

Eel
(2) ψ (1);ψ (0){ }  = ψn

(1) Ĥ (0)-εn
(0) ψn

(1)

n

occ
∑ + ψn

(1) V̂ (1) ψn
(0)

                                 + ψn
(0) V̂ (1) ψn

(1) + ψn
(0) V̂ (2) ψn

(0)

                             + 1
2

δ2EHxc
δρ(!r )δρ(!r')  n

(1)(!r ) n(1)(!r')∫∫  d!r d!r'

or minimize

ψ n
(1) (r)

n(1)(r)

Ĥ (1)

V̂ (2)

0 = ψm
(0) ψn

(1) for m ∈occupied set
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The potential and its 1st derivative

V (0)(!r) =  - Zκ
!r-
!
Rκ
aaκ

∑

 

V (1)(!r) = ∂V(!r)
∂Rκ ,α

a  = Zκ
!r-
!
Rκ
a 2  . 

∂ !r-
!
Rκ
a

∂uκ ,α
a =  - Zκ

!r-
!
Rκ
a 3  .  !r-

!
Rκ
a( )α

Derivative with respect to Rκα
a

Collective displacement with wavevector   
!q

Generalisation to pseudopotentials can be worked out ...

 
V!q,κ ,α

(1)  (!r) = ei!q
!
Ra

a
∑

∂V(!r)
∂Rκ ,α

a  
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Factorization of the phase
Suppose unperturbed system periodic

If perturbation characterized by a wavevector :

all responses, at linear order, will be characterized by a wavevector :

Now, define related periodic quantities 

In equations of DFPT, only these periodic quantities appear: 

phases                   and                 can be factorized 

Treatment of perturbations incommensurate with unperturbed  system 
periodicity is thus mapped onto the original periodic system.

 V
(0)(!r+

!
Ra ) =  V (0)(!r )

 V
(1)(!r+

!
Ra ) =  ei!q.

!
Ra  V (1)(!r )

 n
(1)(!r+

!
Ra ) =  ei!q.

!
Ra  n(1)(!r )

 n
(1)(!r ) =  e-i!q !r  n(1)(!r )

 e-i
!q.!r

 
ψm,

!
k,!q

(1) (!r+
!
Ra ) =  ei(

!
k+ !q)

!
Ra  ψm,

!
k,!q

(1) (!r )

 
um,
!
k,!q

(1) (!r ) =  (NΩ0 )
1/2  e-i(

!
k+ !q)!r  ψm,

!
k,!q

(1) (!r )

 e-i(
!
k+!q)!r



AMM lecture 24 April 26

Computing mixed derivatives 
How to get E j1 j2   from                          ?ψα

(0) , ψα
j1 , ψα

j2  

 

Eel
(2) ψ (1);ψ (0){ }  = ψn

(1) Ĥ (0)-εn
(0) ψn

(1)

n

occ
∑ + ψn

(1) V̂ (1) ψn
(0)

                                 + ψn
(0) V̂ (1) ψn

(1) + ψn
(0) V̂ (2) ψn

(0)

                             + 1
2

δ2EHxc
δρ(!r )δρ(!r')  n

(1)(!r ) n(1)(!r')∫∫  d!r d!r'

Generalization to

 

!Eel
j1 j2 ψ j1 , ψ j2 ;ψ (0){ }  = ψn

j1 Ĥ (0)-εn
(0) ψn

j2

n

occ
∑ + ψn

j1 V̂ j2 ψn
(0)

                                 + ψn
(0) V̂ j1 ψn

j2 + ψn
(0) V̂ j1 j2 ψn

(0)

                             + 1
2

δ2EHxc
δρ("r )δρ("r')  n

j1 ("r ) n j2 ("r')∫∫  d"r d"r'

 
Eel

j1 j2  = 1
2
!Eel

j1 j2 + !Eel
j2 j1( )

with

being a stationary expression, leading to the non-stationary expression
Eel

j1 j2 ψ j1;ψ (0){ }  = ψn
j1 V̂ j2 ψn

(0)

n

occ
∑ + ψn

(0) V̂ j1 j2 ψn
(0)

Independent of            ψ j2
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Order of calculations in DFPT
(1)Ground-state calculation

(2)Do for each perturbation j1

use
using minimization of second-order energy

or
Sternheimer equation

Enddo

(3)Do for each { j1, j2}   

get E j1 j2   from

Enddo

(4)Post-processing : from ‘bare’ E j1 j2 to physical properties

V (0)  →  ψn
(0) , n(0)  

ψn
(0) , n(0)

V j1  →  ψn
j1 , n j1  

ψn
(0) , ψn

j1 , ψn
j2  
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Phonon band structures
from DFPT
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From DFPT : straightforward, although lengthy (self-consistent calculation) 
to compute, for one wavevector :

Full band structure needs values for many wavevectors ...

)(~
', qC kk
!

ba

XG, J.-C.Charlier, D.C.Allan, M.P.Teter, Phys. Rev. B 50, 13055 (1994)

SiO2 alpha-quartz 

Phonon band structure
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If IFCs were available, dynamical matrices
could be obtained easily for any number of wavevectors

IFCs are generated by

= Fourier interpolation of  dynamical matrices.

Cκα ,κ 'β (0,b) =
(2π )3

Ω0

!Cκα ,κ 'β (
!q)e−i

!q⋅
!
Rb d!q

BZ
∫

!Cκα ,κ 'β (
!q) = Cκα ,κ 'β (0,b)e

i!q⋅
!
Rb

b
∑

Fourier Interpolation
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Cκα ,κ 'β (0,b) =
(2π )3

Ω0

!Cκα ,κ 'β (
!q)e−i

!q⋅
!
Rb d!q

BZ
∫

Key of the interpolation : replace the integral

by summation on a few wavevectors (=“q-points”).

xq

Yq

Fourier

Grid of  (l,m,n) points IFC�s in box of (l,m,n) periodic cells

Numerical Fourier Interpolation
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Fourier interpolation : Silicon

Real space IFC�s calculated with 10 q-points
Real space IFC�s calculated with 18 q-points
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Interatomic force constants for silicon

NN

= total

XG, Adv. in Quantum Chemistry 33, 225 (1999)

IFC�s are short range, i.e. falling to zero quickly 

after the nearest-neighbors (NN).
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Interatomic force constants for silica quartz

NN

NN

= total

= dipole-dipole
= short - range

Quartz
3 Si
6 O

Si

O

XG, Adv. in Quantum Chemistry 33, 225 (1999)

Long-ranged 
interatomic forces !
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Understanding the long-range behaviour
When a ion with charge Z is displaced from its equilibrium position, a 
dipolar electric field is created. Its effect on other ions is described by a 
dipole - dipole interaction appearing in IFC’s.

Suppose : homogeneous material with isotropic dielectric tensor        ,          
ions with charges Zk and Zk’ , then

εδαβ

Long range decay 
of the IFC�s : 1/d3

+

+

-

-

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−= 53

'
', 3),0(

d
dd

d
ZZbC kk

kk
βααβ

βα
δ

ε

kk
aa

kk Rrrd ττ −+=−= ''
0
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!Cκα ,κ 'β
na ("q→ 0) = 4πe

2

Ω0

Zκ ,αγ
∗ qγ

γ
∑ Zκ ',βv

∗ qv
v
∑

qγ εγ v
∞ qv

γ ,v
∑

electronic dielectric tensor
(electronic contribution to the screening of the charges)

Born effective charge 
tensor for atom

Effect of the long-range interaction
The dynamical matrix exhibit a non-analytical (na) 
behavior, mediated by the long-wavelength electric field

(Proportionality coefficient between polarisation and displacement, also 
between force and electric field)

κ

Both can be linked to a second derivative of total energy

εγ v
∞ = δγν + 4π

∂Pγ
∂εν

Zκ ,αβ
∗ =Ω0

∂Pα
∂uκ ,β δ

!
E=0

=
∂Fκβ
∂εβ
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Interpolation Scheme
Use Abinit to calculate                on a few Q-point.

Subtract the dipole-dipole coupling                

Calculate           and        

Use the real space IFC�s to interpolate at any Q-point.

Add the dipole-dipole part for that Q-point

)(~
', qC kk
!

ba

*
ab,kZ

¥
v,ge

)(~
', qCna
kk
!

ba

Fourier Transform to obtain                      CSR
kα ,k 'β (0,b)

Enforce sum-rules asr

dipdip

ifcflag

Abinit

Anaddb

chneut

Diagonalize dynamical matrix to find phonon frequencies 

Time-consuming
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Phonon dispersion curves of ZrO2
High - temperature : Fluorite structure
(              ,  one formula unit per cell )Fm3m

Supercell calculation + interpolation
!   Long-range dipole-dipole

interaction not taken into account

ZrO2 in the cubic structure at the equilibrium 
lattice constant a0 = 5.13 Å.

DFPT (Linear-response)
with =   5.75

=  -2.86
=   5.75

LO - TO splitting  11.99 THz
Non-polar mode is OK

ZZr
*

Z0
*

ε∞

Wrong
behaviour

(From Detraux F., Ghosez Ph. and Gonze X., Phys. Rev. Lett. 81, 3297 
(1998) - Comment to the Parlinski & al paper)

(From Parlinski K., Li Z.Q., and Kawazoe Y.,
Phys. Rev. Lett. 78, 4063 (1997))
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Phonon dispersion relations.

(a) Ideal cubic phase : unstable.

(b) Condensations of the unstable
phonon modes generate
a (meta) stable orthorhombic phase

MgSiO3 CUBIC

(5at/cell)

ORTHORHOMBIC

(20at/cell)

Analysis of instabilities
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Thermodynamic 
properties
from DFPT
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Statistical physics : phonons = bosons
Harmonic approximation : 
phonons are independent particles, 
obeying Bose-Einstein statistics 

Internal energy 

 
Uphon = !ω

0

ωmax

∫ n(ω ) + 1
2

⎛
⎝⎜

⎞
⎠⎟
g(ω )dω

Energy of the harmonic oscillator Phonon density of states

All vibrational contributions to thermodynamic properties, 
in the harmonic approximation, can be calculated 
in this manner. 

1

1)(
−

=
TkBe

n ωω



AMM lecture 24 April 42

Phonon density of states

For each frequency channel, 
count the �number� of 
phonon modes

m = index of pattern of vibration,
= a crystalline momentum 

(=> velocity of the vibrational wave)
(c

m
)

(cm-1)

-quartz

stishovite

a

 
!q

)(
3
1)( ∑ −=

qm
qm

at
norm Nn
g ωωδω
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Helmoltz free energy and specific heat

quartz
stishoviteVibrational contribution to F :

Vibrational contribution to Cv :

TSUF −=
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V T
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T
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⎞
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⎛
∂
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⎝
⎛
∂
∂=⎟

⎠
⎞⎜

⎝
⎛
∂
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TkNnF
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⎟⎟⎠
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⎜⎜⎝

⎛
=Δ

ωωωωω

dg
TkTk

kNnC
BB

BatV ∫ ⎟⎟⎠
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Ab initio thermal expansion

Alternative path : 
minimisation of 
free energy
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The thermal expansion 
contribution

Ab initio thermal expansion

Linear thermal expansion coefficient
of bulk silicon

G.-M. Rignanese, J.-P. Michenaud and XG
Phys. Rev. B 53, 4488 (1996)
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Electron-phonon
effects

on electronic energies
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Motivation
- peaks shift in energy
- peaks broaden with increasing 
temperature : decreased electron lifetime

L. Viña, S. Logothetidis and M. Cardona, 
Phys. Rev. B 30, 1979 (1984)

T-dependence of electronic/optical properties

M. Cardona, Solid State Comm. 133, 3 (2005)

- even at 0K, vibrational effects are 
important, due to Zero-Point Motion

Usually, not included in first-principles
(DFT or beyond) calculations !

0.37eV indirect
0.6eV direct
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The phonon population contribution: 
Diatomic molecules

(6 modes decouple as 3 translations, 2 rotations + the stretch.) 

Concepts … 
... can be explained with diatomic molecules 

Simple :
-discrete levels, simple molecular orbitals 
-only one relevant vibration mode.

Phonon population effects in solids
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The phonon population contribution: 
Diatomic molecules

Average eigenenergies in the BO approx.

(1) Time-average of eigenenergies 
from  Molecular Dynamics trajectories,

at average T, with

Pros : well-defined procedure ; compatible with current implementations 
and computing capabilities  ;                     from DFT or GW ; 
anharmonicities

Cons : if classical dynamics => no zero-point motion ; adiabatic 
(vibrations, but no exchange of energy !) ; hard for solids (supercell)
also supercell mix eigenstates, need unfolding

εn (ΔR)

ΔR(t)

εn (T ) = limτ→∞

1

τ
εn (ΔR(t))0

τ

∫ dt

εn (ΔR(t))

Electronic eigenenergies,
function of the bond length                 =>
=> broadening and shift !
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The phonon population contribution: 
Diatomic molecules

Average eigenenergies in the BO approx.

Electronic eigenenergies
function of the bond length

(2) Thermal average with accurate
quantum vibrational states,

Pros : zero-point motion ;                       from DFT or GW ; 
anharmonicities

Cons : hard to sample more than a few vibrational degrees of freedom ;     
adiabatic (vibrations, but no exchange of energy !); hard for solids 
(supercell), also supercell mix eigenstates, need unfolding

Alternative: one very large supercell with prepared atomic displacements

εn (ΔR)

εn (ΔR(t))

Z = e
−
Eph (m)
kBT

m
∑εn (T ) =

1
Z

e
−
Eph (m)
kBT

m
∑ χm

* (ΔR)εn (ΔR) χm (ΔR)dΔR∫( )



AMM lecture 24 April 51

The phonon population contribution: 
Diatomic molecules

Average eigenenergies : BO and harmonic approx.

(3) Thermal average with quantum vibrational states in the harmonic
approximation, and expansion of                    to second order 

Pros : zero-point motion ;                       from DFT or GW ; 
tractable … for molecules …

Cons : hard for solids (supercells) ; no anharmonicities ; 
adiabatic (vibrations, but no exchange of energy !); supercell mix 
eigenstates, need unfolding

δεn (T ) =
∂εn
∂nvib

nvib (T )+
1
2

⎛
⎝⎜

⎞
⎠⎟

εn (ΔR)

nvib(T ) =
1

e
− !ω
kBT −1

εn (ΔR)

εn = εn
0 + ∂εn

∂R
ΔR + 1

2
∂2εn
∂R2

ΔR2Eph (m) = !ω (m + 1
2
)

T-dependent phonon occupation 
number  (Bose-Einstein) 
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Review

* If adiabatic approximation ... neglect the phonon frequencies with 
respect to the electronic gap, no transfer of energy  :

Allen-Heine-Cardona (AHC) formalism

 
δε !kn (T ,V = const) = 1

N !q

∂ε !kn
∂n!qj!qj

∑ n!qj (T )+
1
2

⎛
⎝⎜

⎞
⎠⎟

 

∂ε !kn
∂n!qj

=
1
2ω !qj

∂2ε !kn
∂Rκa∂Rκ 'bκaκ 'b

∑ ξκa (
!qj)ξκ 'b (−

!qj)
MκMκ '

eiq.(Rκ 'b −Rκa )

occupation number 
from Bose-Einstein 
statistics

Allen + Heine, J. Phys. C 9, 2305 (1976).        Allen + Cardona, Phys. Rev. B 24, 7479 (1981) ; 27, 4760 (1983).

 ξκa (
!qj)

“Phonon mode factor”Electron-phonon 
coupling energy
(EPCE)

Second-order (time-dependent) perturbation theory
(no average contribution from first order)

* Formulas for solids (phonons have crystalline momentum)

phonon eigenmodes κ = atom label           a=x, y, or z
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ReviewEigenvalue changes                  ?

Hellman-Feynman theorem :

 

∂2ε !kn
∂Rκa∂Rκ 'b

⎛

⎝⎜
⎞

⎠⎟

ε !kn = φ !kn Ĥ !k φ !kn

ε !kn
(1) = φ !kn

(0) Ĥ !k
(1) φ !kn

(0)

ε !kn
(2) = φ !kn

(0) Ĥ !k
(2) φ !kn

(0) + 1
2

φ !kn
(0) Ĥ !k+ !q

(1) φ !k!qn
(1) + (c.c)( )

Ĥ=T̂+V̂nucl+
ρ r'( )
r-r'∫ dr'+ dExc

dρ r( )

One more derivative :  

Debye-Waller
Antoncik

Fan
“self-energy”
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Non-adiabatic AHC theory
Beyond adiabatic perturbation theory … Many-body perturbation theory !
Fan self-energy (also called Migdal self-energy) :

Different levels :
On-the-mass shell approximation
Quasi-particle approximation 

ελ = ελ
0 + Σλ

ep(ελ
0 )

ελ = ελ
0 + Σλ

ep(ελ ) ελ = ελ
0 + ZλΣλ

ep(ελ
0 )

Or even spectral functions

Hv
(1) Hv

(1)*

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, 
M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)
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Reminder : Many-body perturbation theory
Historically older than DFT (from the 40-50�s) !
Big names : Feynman, Schwinger, Hubbard, Hedin, Lundqvist
Heavy formalism ! Not amenable to 1-hour presentation …
Diagrammatic representation of perturbative terms
Based on Green’s functions = propagators

G(r,t;r ',t ')

Propagation without Coulomb interactions
+
Propagation with polarization of medium
+
Propagation with mean-field electrostatic

interaction with other electrons

1-particle
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Reminder : GW approximation

Wavefunctions DFT GW

− 1
2
∇2 +Vext (r)+VH (r)

⎛
⎝⎜

⎞
⎠⎟ψ i (r)+Vxc(r)ψ i (r) = ε i

KSψ i (r) DFT

− 1
2
∇2 +Vext (r)+VH (r)

⎛
⎝⎜

⎞
⎠⎟ψ i (r)+ Σ∫ (r,r ';ε i

QP )ψ i (r ')dr ' = ε i
QPψ i (r)

GWΣ(r,r ';ω ) = lim
δ→0+

i
2π

dω '∫ eiω 'δ G (r,r ';ω +ω ') W (r,r ';ω ')
Green’s function Screened interactionSelf energy
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Reminder : Linearized quasi-particle equation

ε i
QP = ε i

KS + Zi ψ i
KS Σ(ε i

KS )−Vxc ψ i
KS

Zi
−1 = 1− ψ i

KS ∂Σ
∂ε εi

KS

ψ i
KSwith
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DFT T-dependent band structure

Diamond  0 Kelvin
(incl. Zero-point motion)

Note the widening of 
the bands = lifetime

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)
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Diamond  300 Kelvin

Note the widening of 
the bands = lifetime

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

DFT T-dependent band structure
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Diamond  900 Kelvin

Note the widening of 
the bands = lifetime

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

DFT T-dependent band structure
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Diamond  1500 Kelvin

Note the widening of 
the bands = lifetime

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

DFT T-dependent band structure



AMM lecture 24 April 62

Non-adiabatic AHC theory vs experiment
ZPR of the band gap
Two different exp techniques
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Band gap : theory vs experiment

Eg,exp .7 1.2 1.5 2.4 2.4 2.5 3.2 3.4 3.9 5.5 6.3 7.7 14.2 (eV)
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Electron-phonon
effects

on transport properties
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Transport properties
For a metal, Ohm’s law : 

Conductivity in doped semiconductors. 

How to compute the conductivity tensor ? 

Suppose we now the density of carriers (ne or nh).

Seebeck coefficient in thermoelectrics. 
A difference of temperature creates a difference of electric potential. 

σ

ΔV = S.ΔT

How to compute the mobility tensors and          ? µe µh

Superconducting critical temperature  
Resistivity of a normal metal drops to 0 below the critical temperature

j =σE
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Effect of a steady electric field on a metal

Fermi surface shift due to electric field

Group velocity of an electronic state : vnk,α = 1
!
∂εnk
∂kα

= unk
p̂α
me

unk

Without electric field: cancellation of velocities between
opposite momentum electrons => no net current
With electric field: unbalance => net current
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Boltzmann transport equation

In steady state, and with homogeneous medium

Ensemble of particles distributed in space and evolving in time.
Distribution function f (r,p,t)
How this distribution evolve with time ?

df
dt

= ∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ force

+ ∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ diffusion

+ ∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ collisions

∂ f
∂t

+ p
m
.∇f + F.∂ f

∂p
= ∂ f

∂t
⎛
⎝⎜

⎞
⎠⎟ collisions

F ∂ f
∂p

= ∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ collisions
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Electronic Boltzmann transport equation

becomes

Hypotheses : steady state, homogeneous medium, small 
electric field, electron-phonon collisions.

occupation number for state  

F ∂ f
∂p

= ∂ f
∂t

⎛
⎝⎜

⎞
⎠⎟ collisions

nkfnk

−evnk,β
∂ fnk

0

∂εnk
=

m
∑ dq

ΩBZ
∫ τ mk+q→nk

−1 ∂ fmk+q
∂E

−τ nk→mk+q
−1 ∂ fnk

∂E
⎡

⎣
⎢

⎤

⎦
⎥

fnk
0 = 1

e εnk−εF( ) kBT +1
with the Fermi-Dirac distribution 

and                   is the electron-phonon partial decay rateτ nk→mk+q
−1
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Electronic partial decay rate

τ nk→mk+q
−1 = 2π

!ν
∑ gmnj k,q( ) 2

njq + fmk+q
0( )δ Δεk,k+q

nm + !ω jq( )+ njq +1− fmk+q
0( )δ Δεk,k+q

nm − !ω jq( )⎡⎣ ⎤⎦

gmnj k,q( ) = umk+q ΔqνVKS unk

Electronic partial decay rate due to electron-phonon interaction

with the electron-phonon matrix element obtained from DFPT

Δ jqVKS =
1
2ω jq

∂VKS
∂Rκαpκα

∑ ξκα , j (q)
Mκ

eiqR p

This is connected to the imaginary part of the Fan self-energy.
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Imaginary part of the Fan self-energy
Fan self-energy (also called Migdal self-energy) :

Hv
(1) Hv

(1)*

where
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Mobility in Silicon

S. Poncé, E.R. Margine and F. Giustino, Phys. Rev. B 97, 121201(R) (2018)

Orange : electrons
Blue : holes

Lines : Theory
Signs : Experiment



AMM lecture 24 April 72

Seebeck coefficient of Li

Bin Xu and M. Verstraete, Phys. Rev. Lett. 112, 196693 (2014)
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Pressure-dependent 
superconducting temperature of disilane 

J. Flores-Livas et al, Phys. Rev. Lett. 108, 117004 (2012)
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Supplementary
slides
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Phonons : LDA ? GGA ?
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... Lattice parameters from LDA are usually underestimated

... GGA exists in many different flavors (e.g. PBE, PBEsol, AM05, ...),
PBE tends to overestimate, PBEsol is better, etc ...

Effect of the choice of XC flavor on 
phonon frequencies, dielectric tensor, Born effective charges  ?

Exhaustive study :
L. He et al, Phys. Rev. B89, 064305 (2014)

Studied (cf LibXC) : 
LDA, PBE, PBEsol, AM05, WC, HTBS
for Si, quartz, stishovite, zircon, periclase (MgO), copper

Message : in general, at relaxed atomic parameters, LDA performs 
better ...

DFPT : use it with LDA ? GGA-PBE ... ? 
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The thermal expansion 
contribution

Gamma phonons of zircon

L. He et al, Phys. Rev. B89, 064305 (2014)
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The thermal expansion 
contribution

Thermal expansion and T-dependent 
bulk modulus of copper

L. He et al, Phys. Rev. B89, 064305 (2014)
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Computation of              (I)  εα
(3)

Starting from

Premultiply by           gives

(Ĥ (0)- εα
(0) ) ψα

(3) + (Ĥ (1)- εα
(1) ) ψα

(2) + (Ĥ (2)- εα
(2) ) ψα

(1) + (Ĥ (3)- εα
(3) ) ψα

(0)  = 0

ψα
(0)

εα
(3)  = ψα

(0) Ĥ (3)  ψα
(0)

         + ψα
(0) Ĥ (2)- εα

(2)  ψα
(1)

         + ψα
(0) Ĥ (1)- εα

(1)  ψα
(2) ! ψα

(2) is needed in this formula
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The computation of                  (II)  εα
(3)

However, perturbation expansion of at third order gives:

The sum of terms in a row or in a column vanishes ! (Exercice !)
Suppress 2 last columns and 2 last rows, rearrange the equation, and get:  

0 = ψα Ĥ- εα ψα

0  =  ψα
(0) Ĥ (3) - εα

(3) ψα
(0) + ψα

(1) Ĥ (2) - εα
(2) ψα

(0) + ψα
(2) Ĥ (1) - εα

(1) ψα
(0) + ψα

(3) Ĥ (0) - εα
(0) ψα

(0)

     + ψα
(0) Ĥ (2) - εα

(2) ψα
(1) + ψα

(1) Ĥ (1) - εα
(1) ψα

(1) + ψα
(2) Ĥ (0) - εα

(0) ψα
(1)

     + ψα
(0) Ĥ (1) - εα

(1) ψα
(2) + ψα

(1) Ĥ (0) - εα
(0) ψα

(2)

     + ψα
(0) Ĥ (0) - εα

(0) ψα
(3)

εα
(3)  = ψα

(0) Ĥ (3) ψα
(0) + ψα

(1) Ĥ (2) ψα
(0)

        + ψα
(0) Ĥ (2) ψα

(1) + ψα
(1) Ĥ (1)-εα

(1) ψα
(1)

[ We have used                            and                                               ]ψα
(0) ψα

(0)  = 1         ψα
(0) ψα

(1) + ψα
(1) ψα

(0)  = 0

! ψα
(2) is not needed in this formula
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Variational Principle for the lowest  
(Hylleraas principle)
ε(2)=min

ψ(1)
ψ (1) Ĥ (1) ψ (0) + ψ (1) Ĥ (0) - ε(0) ψ (1) + ψ (0) Ĥ (2) ψ (0) + ψ (0) Ĥ (1) ψ (1){ }  

with the following constraint on           :

Allows to recover Sternheimer’s equation :

+ Lagrange multiplier

=>

Equivalence of : * Minimization of 
* Sternheimer equation
* also … sum over states … Green’s function …

ψ (0) ψ (1) + ψ (1) ψ (0) = 0     

δ
δψ (1)  [ ... ] = 0    

(Ĥ (0)- ε(0) ) ψ (1)  + (Ĥ (1)- ε(1) ) ψ (0)  = 0

ψ n
(1)

εn
(2)

εα
(2)
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Density functional perturbation theory
Without going into the formulas, there exist expressions :

E(0) ψα
(0){ }                                                              ψα

(0)

E(1) ψα
(0){ }

E(2) ψα
(0);ψα

(1){ }                                                       ψα
(1)

E(3) ψα
(0);ψα

(1){ }
E(4) ψα

(0);ψα
(1);ψα

(2){ }                                               ψα
(2)

E(5) ψα
(0);ψα

(1);ψα
(2){ }    

variational with respect to 

variational with respect to 

variational with respect to 

knowledge of                       allows one to obtain

+        knowledge of                allows one to obtain

knowledge of                              allows one to obtainψα
(0);ψα

(1);ψα
(2){ }  n(2),H(2), εα

(2)
ψα
(0);ψα

(1){ }  

ψα
(0){ }  n(0),H(0), εα

(0)

n(1),H(1), εα
(1)

Need          unlike in ordinary QMψα
(2)  
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Quasi-harmonic approximation:
a refresher

 

∂εn!k
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=   
∂εn!k
∂T

⎛
⎝⎜

⎞
⎠⎟V

  +   
∂εn!k
∂lnV

⎛
⎝⎜

⎞
⎠⎟ T

  ∂lnV
∂T

⎛
⎝⎜

⎞
⎠⎟ P

=αP (T )
Thermal expansion 
coefficient

Constant-pressure temperature dependence of the 
electronic eigenenergies : two contributions

Contribution of the phonon population, i.e. the vibrations 
of the atomic nuclei, at constant volume
+
Contribution of the thermal expansion, i.e. the change in 
volume of the sample, at constant temperature

Divide and conquer …

Constant 
volume

Constant 
temperature


