Advanced Materials Modeling:

Defects

Center for Energy Science and Technology (CEST)
Skolkovo Institute of Science and Technology
Moscow, Russia



Thermodynamics of Defects

[ Very small concentrations of defects can
significantly alter materials properties

Small concentration of Fe
impurities are visible by
naked eye in intrinsically
transparent MgO

50 ppm Fe
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Si semiconductors contain 10~2-10723 intentional
impurities per atom




“My precious!”: Perfect defected gems

Cr:Al, 0O,

Impurities are responsible for the color
of sapphire and many other precious
stones

Typical concentrations: 100-10000 ppm Fe,Ti:Al,O,
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“Physics of dirt”

1939: First p-n junction made at Bell Labs (accidental
observation of light effect on resistivity of a cracked silicon
crystal)




“Physics of dirt”

1948: W. Shockley (Bell Labs) — First bipolar (n-p-n) transistor
design (eliminate delicate point contacts)

electrons

Emitter: heavily P-doped Si, base: B-doped Si,
collector: lightly n-doped Si




Technology: fine control of “dirt” (doping)

1950-1954: (Bell Labs) — High-precision doping of a purified Ge
(but the small band gap of Ge made the device properties
temperature-dependent)

1958: J. Kilby (Texas Instruments) — First integrated circuit on Ge;
R. Noyce (Fairchild Electronics, CA) — First integrated circuit on Si

1960: J. Atalla (Bell Labs) — First metal-oxide-semiconductor
(MOS) field-effect transistor (Al-SiO,-Si) — basis of modern

electronics CUCATE
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“Let there be light!”: solid-state lighting

1907: H.J. Round - discovery of light emission from SiC diode
under a voltage bias; this was the first light-emitting diode (LED),
but very inefficient

1962: Infrared and red LEDs and lasers (GaAs, AlGaAsP)

~1990: First blue LEDs (GaN)
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Why oxides are semiconductors?

TiO, — a versatile functional material (paint, sunscreen,
photocatalyst, optoelectronic material)
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Why oxides are semiconductors?

TiO, — a versatile functional material (paint, sunscreen,
photocatalyst, optoelectronic material)
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Why oxides are semiconductors?

\
o

Ti

TiO, is an n-type
semiconductor, whose
conductivity depends on
O, pressure

M.D. Earle, Phys. Rev. 61, 56 (1941)
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Why oxides are semiconductors?

OXIDISED

EXTREMELY STRONGLY | REDUCED
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Different regimes correspond to different intrinsic defect

distributions in ultrapure TiO, M. K. Nowotny, T. Bak, and J. Nowotny,
J. Phys. Chem. B 110, 16270 (2006)




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

zinkblende (can be obtained
by growth on substrates with
cubic lattice structure)

wurtzite (stable)

Band gap ~3.3 eV (direct), but (almost?) exclusively n-
type semiconductor




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

zinkblende (can be obtained
by growth on substrates with
cubic lattice structure)

wurtzite (stable)

Can be used for blue/UV LED/lasers, and, in contrast to
GaN, is available as large bulk single crystals




Why oxides are semiconductors?

ZnO — another example of a very promising functional
material, understood less than TiO,

There is no consensus on the

nature of n-type conductivity,

and whether reliable p-type

doping is possible. However,

there is hope (GaN story
wurtzite (stable) repeats itself):

“...native point defects cannot explain the often-observed n-type
conductivity, but the latter is likely to be caused by the
incorporation of impurities during growth or annealing.”

A. Janotti and C.G. van de Walle, Rep.




When imperfections are useful

Tailoring defect properties has a tremendous potential
for designing novel functional materials in many areas of
technology (electronics, optics, catalysis, photocatalysis,
thermoelectrics, optoelectronics, spintronics, etc.)

Il

Understanding the electronic and atomic structure of
defects is of great importance




The “invisible agent”

“...The problem is that defects are often elusive
species, highly diluted, and therefore difficult to detect.
It is as if one wanted to identify all the men with a
beard among the population of Europe from a satellite
which is a few hundreds of kilometers away from the
earth surface: the task is difficult, and it is easy to get
confused.” (G. Pacchioni, ChemPhysChem 4, 1041
(2003))

In fact, the situation is even more complex: The nature and
concentration of defects depend on temperature, pressure, and
charge-carrier doping




Common point defect types

e

(a) perfect lattice (b) interstitial impurity

SRR

(e) substitution of cation (f) substitution of anion




Common point defect types

e

(c) cation vacancy (d) anion vacancy

o

(g) B 5 antisite defect (h) Ap antisite defect




Common point defect types

Defect complexes

Schottky defects Frenkel defects

Stoichiometric charge-
compensated vacancy
combinations (V,, +V*,
V¥ +2V,%, etc.)

Pairs of a vacancy and
the corresponding self-
interstitial (V,” + Na*)




Larger-scale symmetry breaking

Spatial scale

precipitates, interfaces, grain
boundaries, surfaces, etc.

100 nm

10 nm clusters (aggregates)

1nm
point defects and complexes

0.1 nm

Nanometer-size defects are building blocks for the larger defects




Defect formation energy (7=0)
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total




Defect formation energy (7=0)
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Defect formation energy (7=0)

\

defected
total T E A T E

zero-point energy

E perfect contribution
total

AE __ rrdefected perfeet\AE
f = Etotal T EA + Eq - Etotal T ZPE




Defect formation energy (7=0)

defected perfeet
AE f - Etotal total +AE /PE

Formation energy depends on the final (initial) state of
the removed (added) species




Defect formation energy (7=0)

__ prdefected perfect
AEf — Etotal +EA +Eq - total +AEZPE

Contributions to the formation energy:

1) Bond breaking/making
2) Atomic relaxation and polarization (screening)
3) Change in zero-point vibrational energy

4) Final/initial state of removed/added atoms and charges




Gibbs free energy of defect formation
T=0:
AE . Edefected E E Eperfect AE
f — 4~total T LA+ g  total T ZPE

i

T>0:

AGf(Ta \p})= GdefeCted(Ta {p})_zlui(Ta PIAN, +qu (T)

~G(T, {p})




Electronic chemical potential

AG, (T, {p}) = G (T, {p}) = . (T, p)AN, +

~G™ (T, {p})

H. is a property of the electronic reservoir

In a doped system, (., is close to the Fermi level (the energy
level separating occupied states from the empty states at 7= 0)




Electronic chemical potential

AG, (T, {p}) = G (T, {p}) = . (T, p)AN, +

~G™ (T, {p})

conduction band minimum
(CBm)

—'—-,l—l— —t—!—-— defect level

valence band maximum
(VBM)

n-doped p-doped
M. near CBm M. near VBM

The defects will charge when (. is below the defect level




Electronic chemical potential

AG, (T, {p}) = G (T, {p}) = . (T, p)AN, +
-G (T )

Band structures of O vacancies in MgO bulk (HSE06)
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Electronic chemical potential

AG, (T p}) = G=*(T, {p})~ 3 4 (T, p)AN, +

. Gperfect (T, {p}) + AFVib (T)

MgO(100)
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1) Solid: vibrational entropy (phonons)

2) Solid: electronic entropy

3) Gas: vibrational, rotational, translational, etc. (part of (/; )

4) Solid: defect disorder




Configurational entropy

~~/

G = [U + pV —T(S — Sconﬁg)] _TSconﬁg =G _TSconﬁ
P N equivalent defect sites in the sold

n defects

%)

S = kinZ + kT “;Z, Z =Y, e Fi/kT

° /

sum over different defect
distributions




Configurational entropy

~~/

G :[U+pV_T(S_Sconﬁg)]_TSconﬁg — G_TSconﬁ

P N equivalent defect sites in the sold

n defects
N!

n!(N —n)!

If defects do not interact: S, =k In

Stirling’s formula:

In(n")=n(lnn—-1+0), n>>1, 0 ~ In(27m1)

2n

Seontie = k|[NIn N —nlnn—(N—n)In(N —n)]

Good approximation only on a macroscopic scale




Defect concentration

Minimize the free energy of the system with respect to the
number of defects

G(n) =G, +nAG, =TS, (1)
If defects do not interact:

n 1
~explAG, /kT)+1
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Vacancy concentration

" e exp(A Gf/kT)>> 1

N
n ~ eXp(— AGf (T, p)/kT)— textbook formula
N




Internal defect disorder

LI S=kln(W,___ W

- internal’ " external )
o0 ® o0 S

internal T S

external

spatial , spin, electronic
degeneracy

AG, = AG, — kT In(W,

internal )

1

1

exp(AG, /KT )+1

/4

internal




Constrained equilibrium: Competing defects

A practically relevant constrained defect equilibrium
(e.g., at surfaces):

X X X
X X X

X

X

N\
N

spatially separated sites

Let there be a global equilibrium (gas + surface)

What is the number of different defects (without
assuming small concentrations)?




Constrained equilibrium: Competing defects

G=G,+) N,(AG, —kTInW,)-TS
k

config

oG
—:O, NZSN
ON. Z "

Ny! (Nog — N;)! (No — 2gezi Ni)! )

Sconfie = Kkl X +ee X
config = 1 (Nl! (No — N)!Np! (Ng — Ny — N)! Ni! (No — 2 Nip)!




Constrained equilibrium: Competing defects

G=G,+) N,(AG, —kTInW,)-TS
k

config

oG
—:O, NZSN
ON. Z "

aS config
ON;

=—kln




Constrained equilibrium: Competing defects

G=G,+) N,(AG, —kTInW,)-TS
k

config




Constrained equilibrium: Competing defects

Coupled equations, but easy to solve:

1 AG 1 AG,,
— e =N, —ell
Wi W,

All concentrations can be expressed through one:

Nk :Nk(Ni)
1 AG

NiWe o :NO_ZNk(Ni)jNi
- k

l




Constrained equilibrium: Competing defects

The condition:

Zniél

is automatically fulfilled, due to the correctly counted
microstates




Charged defects and charge compensation

n 1
N exp(AG, /kT)+1

for non-interacting defects

But can charged defects be considered as non-interacting?!

@ @
Q, %0 Q,%#0

_ 90

I/interact o

Coulomb interaction — long-range!




Charged defects and charge compensation

® @
Q,#0 Q,#0

o1e

|7”1—7”2|

I/interact —

For a system of charges:

0.0,
® | |® ;V—H

1nteract -

In the thermodynamic limit (N = <o) the
@ @ electrostatic energy of charges with any
finite concentration diverges

Charged defects must be compensated in realistic materials




Periodic and cluster models of defects

Embedded cluster model Periodic model

otentials ="
potenti Ms
+ Higher-level ab initio methods + Robust boundary conditions

can be applied + Higher defect concentrations

+/- Defects in dilute limit +/- Higher defect concentrations

- Effect O.f embedding on the - Artificial defect-defect
electronic structure and Fermi interactions

level - ? PV. Sushko, A.L. Shluger, and C.R.A. Catlow, Surf. Sci. 450, 153 (2000)




Charged defects and charge compensation

For a system of charges:

Formation energy (eV)

®

®

Z Qin

l-‘/—'] n_rj|

1nteract _

®

®

In the thermodynamic limit (N = <o) the
electrostatic energy of charges with any

finite concentration diverges

Concentration of defects (%)

0.06

0.20 0.46 1.56

Typical dependence of the
defect formation energy as a
function of unit cell size

0.04

0.08 0.12
1/L (A



Charged defects and charge compensation

Concentration of defects (%)
0.06 0.20 0.46

-
o

Typical dependence of the
defect formation energy as a
function of unit cell size

e
o

0.04 0.08 0.12
/L (A7)

S
o
S

Formation energy (eV)
lad
=

In standard periodic calculations the charge per unit cell is
compensated by a uniform background charge (occurs naturally as
a regularization of the Ewald summation)

The compensated defects interact much weaker with each other

But they do interact strongly with the background (~1/L)




Local and global effects of doping

In realistic semiconductors, charged defects can be compensated
by the depletion of charge carriers (electrons or holes)

electrons occupying hole

i i states (localized or not)
interaction

Local effect of doping Global effect of doping
(chemical bond formation) (interaction with the

compensating charge)

Formation energy and concentration of charged defects depend
strongly on the distribution of the defects and the compensating
charge




Defect-defect interactions

0G(T,{p}, te,{n})
=05 n; ~ng.. exp(—AG, kT
on }?/ p(—-AG,/

Long-range (global)

Local interactions: interactions:

¢ Local relaxation e Charging

e Chemical bonding e Fermi level shifting

Dopant Vacancy Vacancy
NZ 4

Dopant

Charged defects at any finite
concentration cannot be considered non-
interacting and must be compensated




Charged defects in a doped material

AG(n)=nAG,(n —>0)+ % £ j g(r)‘E‘zd 1 — TS eonti (1
formation energy /

, ) o electrostatic energy
in the dilute limit

at finite n

0lnZz

Sconfig = kinZ + kT a7

,Z = Zie_Ei/kT

The charged defects are screened by the compensating charge:

N!
n!(N —n)!

S config ~ kIn




Charged defects must be compensated

The compensation depends on the spatial distribution of the
density of states near the Fermi level

1) A standard model for a uniform distribution: uniform
background charge

Bulk—ok  Surface: [O—o—

(somewhat compensating

artificial) ~ density largely in - psGtom

the vacuum region
(a posteriori corrections exist)

H.-P. Komsa and A. Pasquarello, Phys. Rev. Lett. 110, 095505 (2013);
C. Freysoldt and J. Neugebauer, Phys. Rev. B 97, 205425 (2018)
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Makov-Payne correction (bulk)

Concentration of defects (%)
0.06 0.20 0.46

0.04 0.08 0.12

1/L (A
Madelung constant (lattice dependent)

q
2¢& \ -Omthe bulk 2mag

in cubic

lattices
a as —5
AEtormation = Qo — L - 12 - I3 + O0(L™)

Problems: can be easily calculated only for cubic lattices, only
isotropic materials (£ scalar versus tensor)




Freysoldt-Neugebauer-Van de Walle
correction

Isolated charged defect:

L P iy,

.-"-/‘

1/ é‘r

V(r)

Charged defect in a supercell:

W WM

V(T) — Vshort—range(r) 4+ Vlong—range(r)

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

V(T) — Vshort—range(r) 1+ Vlong—range(r)

qrmdel (T’)
plong—range ;) — z f d3r’ =~ model charge
R

T+ R —1'| o
distribution

lattice sum

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

V(T) — Vshort—range(r) 1+ Vlong—range(r)

|G|<cht

del 2

Elong—range — 2_7'[ 2 {qrm ) (|G|)} —ifdG{qm)del (G)}Z
0) |G|? \”5

G#0

/T
Ewald summation

(long-range part)
C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)

remove self-interaction




Freysoldt-Neugebauer-Van de Walle
correction

Charged defect in a supercell:

|G|<cht

del 2
Elong—range =2_T[ 2 {qrm ) (|G|)} — ! jdG{qm)del (G)}Z
0) £ |G|? e

Gfisolated (CI) — Gfsuercell (CI) . Elong—range 4+ qC

ornation ornation

from compensating background (alignment term)
C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)




Freysoldt-Neugebauer-Van de Walle
correction

G%solated (CI) — Gsuercell (CI) . Elong—range 1+ qC

ornation formation

0.2

defect
0.1

/

0.0

—— from DFT
—— long-range
—— short-range

-0.1

=
©
p—
-
L
o
Q.

-0.2

1 IIIIIIIII[I

| l | 1 ] I 1 | |
10.46 20.92 31.38
z (bohr)

1
. 3 short-range short-range
¢ = ﬁf d°r {Vm)del (r) - Viefect (1‘)}

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)

-0.30




Freysoldt-Neugebauer-Van de Walle
correction

|G|<cht

2
21T {qrmdel (lGD} 1 )
Elong—range — _ fdG nodel G
1Y) z |G|? e {q ( )}

\ G+0

screened Coulomb interaction:
e originally formulated for electronic response only (£,)

e was shown to work when ionic response is included (&), but
this is still under investigation (can fail for polarons)

* can be easily generalized to anisotropic materials (¢ — &; )

The method is for calculating formation energy of isolated defect

C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011)



Charged defects must be compensated

2) Impurity donors/acceptors — large concentrations, artificial
interactions

3) Simulate distributed doping with virtual crystal approximation
— arbitrarily small concentrations with finite unit cells, correction
for the dilute limit is needed

Avg = 12 = Getec/Nmg = p-type doping in MgO

7 //////////////////////////;// 7 /////////////////////////////
// conduction band // //conduction band ///
s ] Y yd

- valence band - valence band
_

L. Vegard, Z. Phys. 5, 17 (1921); M. Scheffler, Physica B+C 146, 176 (1987); O.
Sinai and L. Kronik, Phys. Rev. B 87, 235305 (2013)




O vacancies (F-centers) in MgO

MgO bulk with
oxygen vacancy

Band structures of O vacancies in MgO bulk (HSE06)
F F; 24
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Energy (eV)




Atomic relaxation

Relaxation energies for F centers in MgO bulk and at MgO (100)

(100) Surface
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Sensitivity to approximations in DFT

Energy differences between different charge states!
AG (g =+1)=AG; (g = O) A, + 1P,
l

DFT

efect level
|

- IPVBI}/I

= VBM
o= 0.11 bohr™"

—
-
o
=
aal
-
—
=
=
1
.y

—_
o

0.0 0.2 0.4 0.6 0.8
Fraction of exact exchange o

(MgsOs embedded
Also important for optical properties cluster model )

1) Rinke et al., Phys. Rev. Lett. 108, 126404 (2012)
2) Kappers, Kroes, and Hensley, Phys. Rev. B 1, 4151, (1970)




Interacting defects: Space-charge effects

Intrinsic p-doped p-doped
material . before equilibration after equilibration

CB CB CB

--9-

Energy (eV)

Bulk Fermi level
P e e

VB VB

Distance to 0 Distance to 0
An('F’) t surface surface

o _

| No space charge

| No space charge

: o : :
Space charge region z_ = causes band bending and electric field

D

N, : Dopant concentration
o : Surface charge due to vacancy concentrations o=(en, +2emn,)




Electrostatics in periodic calculations of charged defects

AC;fVCA (09 d) — E\cf]ac (09 d)(_l_ngBM) o Ehost (09 d) + % E02
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Electrostatics in periodic calculations of charged defects

VCA (J d) Evac (69 d)(_l_ngBM) _Ehost (69 d) +%E02
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F2* concentration at p-MgO(001)

sem —infinite __ slab
AGf — AGf _ Eband bendinginslab + Erealband bending

[R—
o

r=1,000K T=1,000 K

[u—

S
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T'=400 K I'=400 K

Vac. concentration (%)

10 10"®  10*  10% 10 10" 10*  10%
Dopant concentration (cm™) Dopant concentration (cm™)




Optical properties of defects

conduction

A

/ I 4x

defect levels

=|

N

valence
band

uondiosqge

Ju9IsauIWn|

°
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Defects provide energy
levels in the gap that
influence light absorbtion
and emission
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Optical properties of defects

conduction

band

Lumin. Intensity

L

asuassaulwn|

Total energy
ABiaua uooud 0

uondiosqe

valence

band Configuration coordinate Q

figure courtesy of Xavier

Non-radiative decay: relaxation of excited electron/hole due
to release of heat (phonons)




Polarons

Conduction

bands

Conduction
bands

__hole

%Phono(rg&@

&

Valence bands

Poiagg\@
@ olaron level

Valence bands

Polaron (quasiparticle): An electron or hole dressed in phonons

(lattice relaxation)




Polaron properties

Prediction of polaron
properties:

Conduction ands

A 7 .
 Geometry (radius) and orbital '- .
character of the polaron ' &

e Binding energy (stability,
mobility)

Ebind = Edistort(N + 1) _ Eperfect(N + 1)

\
Valence bands

e Polaron level (luminescence,
absorption) hole polaron in B-Ga,O,




Before modern electronic-structure calculations:
Polaron models

Frohlich model:

)

H polaron = Hyineff + H ph + H el-ph

h? :
= ——V4 Z hwioag ag + Z (Vgaqe' ™ + h.c.)
q q

frequency of longitudinal Fourier components of

optical phonon mode electron-phonon
interaction

> hwio (4MF)1/2( h )1/4
= —1
9 Iq| 0 2Mpwi o

With Frohlich coupling constant: band mass (curvature of band)

mb’ 1 1
QOfF = € —
2h3wio \€sxe €0

electronic dielectric response ™ static dielectric constant




Before modern electronic-structure calculations:
Polaron models

| | 1 |
Eying= —hwyoag

e

J
(NS

weak coupling

IN

1
@)

E'i na

— Frohlich, weak coupling
— Pekar, 2nd order
— Feynman, all coupling

f—
o O

strong coupling

4 6 8
Coupling constant ag
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polaron radius: r, = 3.2 pontl Eymp




Small versus large polarons

Polaron = Charge + Lattice Distortion

e & o o .O.

, - O @ O
® @ . .
e o o o O

Large (Frolich) polaron Small polaron (metal
(llI-V and lI-VI materials, oxides, polymers)
alkaline halides)

ﬁ Mobility N

~ [exphwyo/kgT) — 1] ~exp(—E,/kgT)




Approximations in Frohlich model

1) Only one LO mode (simple crystals)
2) Polaron radius is large compared to lattice constant

3) LO mode’s dispersion in neglected




Modeling polarons with DFT

.O.
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Large (Frolich) polaron Small polaron (metal
(llI-V and 1I-VI materials, oxides, polymers)
alkaline halides)

Mobility
~ [exphwpo/kgT) — 1] ~exp(—Eq/kgT)

Perturbation theory explicit calculation




Modeling polarons with DFT

Embedded cluster model Periodic model

+ Isolated polaron + Long-range ionic response

+ Higher-level methods can be - Artificial periodic repeat (finite-
applied size effects)

- No long-range phononic response

- Artificial finite-size effects




Supercell calculations of small polarons

4 . . )
Approximation of the

exchange correlation functional E, ..
LDA, PBE, EXX, ...

s J/

_ Self-interaction error
Delocalization -
Finite-size errors Localization

- Finite-size supercell errors
- Localization/Delocalization errors




The polaron potential energy surface

Conventional approach: Relax charged supercell (add or
remove electron):

rr}iz_n{E(N — 1)}

Number of atoms

1000 512 216

hole polaron in
MgO, HSE(a=1)

Finite-size
correction ~0.2 eV

i | Note: for polarons this
3 ~1/gg +—— | __is not always the case
.. (e.g., TiO,), depends

Inve(r)écla superg(fll size (?funits 0%?20'”3) | on COUP"“Q Strength

Polaron binding energy (eV)

1
=
N




Conventional approach: Dependence on functional

| ' l

o Fixed geometry
o Full relaxation
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Hole polaron in
| 216 atom MgO superce
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lonized system: E(N%1)

 Polaron properties show strong dependence on XC functional
« Even qualitative predictions are not possible




Theoretical challenges

Self-interaction error Ei

 Convex curvature
« PBE
Orbital relaxation rn

« Concave curvature %%%“ﬁ)
« Exact exchange | |

total energy

N-1
electrons
From (exact) DFT: IP Theorem

“Piecewise linearity of total energy with fractional occupation”

E(N—1)—E(N)=—e, (N)HIIHX HA

L

Best hvbrid functional [4]: \
Ja: Il + X = Agc = 0| Finite-size errors

[3] Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)
[4] Lany and Zunger, Phys. Rev. B 80, 085202 (2009)




Polaron binding energy
Epinda = Egistort(N — 1) — Eperfect(N —1)

Eperfect(N - 1) - Eperfect(N) = —E€VBM (N) @
+Hperfect + z:perfect + Aperfect

Ebind = Edistort(N _ 1) _ [Eperfect(N) — €EVBM (N)] + Hp + Zp + Ap

@ Edistort(N - 1) _ Edistort(N) = —€HO (N)

+Hdis tort + Z:dis tort + Adis tort

Ebind — Edistort(N) _ Eperfect(N) — [EHO (N) — €VBM (N)] +
(Hd - Hp) + (Zd - Zp) + (Ad - Ap)

1) Only neutral system needs to be calculated
2) Only differences in exchange-correlation corrections
are present

Zawadski et al., Chem. Phys. Lett. 506, 42 (2011)
Sadigh et al., PRB 92 . 075202 (2015




The polaron potential energy surface

HF

Conventional approach: g
rrli% n{E(N — 1)}

DFA

| |
] I
N N-1
electrons

Exact functional: E(N —1) — E(N) = —eyo (N)

Irli? N{E(N) — €9 (N)} - closed-shell calculations!
j

Force evaluation from neutral system properties:

F; (E(N) — eno (N))

~ 3R,

Sadigh et al., PRB 92, 075202 (2015)
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The functional dependence is greatly reduced!




Finite-size effects

Number of atoms
216

1000 512
I S

[
.2
p— N

hole polaron in
MgO, HSE(a=1)
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Finite-size effects

Number of atoms
1000 51 216 64
] R & A(E(N) — e(N))

I
N
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hole polaron in
MgO, HSE(a=1)
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Long-range behavior of the polaron

Y

Increasing .
supercell size ~1/kr /' Dilute limit

Landau-Pekar: Small polarons in a classical polarizable

: Ir 1 1)\1
medium 2 V— ~(———)—
edium 2 V ph ~ o T o)

Pekar, Zh. Eksp. Teor. Fiz 16, 335 (1946)




Long-range behavior of the polaron level E
with respect to the band edge

Pekar’s 1:2:3:4 theorem (strong coupling):
Hpolar on — Hki neti ¢T thonon + Hel—phe

Eki neti 'cEphonon: _EO: _Eel—ph ~1:2:3:4 >

Evi na = Exi neti cs Ey = Ey; neti c




Hole polarons in rock-salt MgO

5
>
O
~
>
QN
b
)
-
-

I T I T

0. 1
Q" (in units of O, )




Electron polarons in rutile TiO,
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Polaron eigenstate density and radius

hole polaron in MgO electron polaron in rutile TiO,
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Distance to polaron center (A) Distance to polaron center (A)

Frohlich coupling constant ay = /27:" (
LO

(44> =4.4




