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Molecular dynamics

7 Equations of motion (classical):
(Ri,p1) 1) Assign initial R (positions) and p (momenta)

(R 2) (Rs.$3) 2) Evolve (numerically) Newton's equations of
v motion for a discrete time increment (requires
evaluation of the forces)

d OH(R, . dR _ OH(R, \
p="2__ (10),R= _ OH(Rp)
dt OR dt

2 ) .
H(R,p) =212p_ﬂf“+V(R) p; =—-ViV=F;, R, =p,;/M
MIRI = F;
(RZ(HC&)’\, 3) Assign new positions and momenta

(Ri(t+dt), P (t+dt))

pa(t+dt) _

U (Rs(t+dt), ps(t+dt))




Molecular dynamics - ensembles

[ Microcanonical (NVE)

Number of particles, Volume, and total Energy are
conserved (natural ensemble to simulate MD, follows
directly from Hamilton egs. of motion)

[ Canonical (NVT)

Number of particles, Volume, and Temperature are
conserved (system in contact with a heat bath)

O NPT, NPH (Pressure, H - enthalpy)
For studying phase transitions

O Grand-canonical (uVT)
For adsorption/desorption




Molecular dynamics - ensembles

[

Computer “experiment”:

equilibrate the system and measure

1 Wi GAWIWWI VEIVI 1] AN IS rl‘l\ll L}




Molecular dynamics - solving egns.
MIRI = F;({R})

Many-body problem - need numeric solution (except in
very special cases)

Simplest method: ,forward Euler*:
. 1.
R(t + At) = R(t) + R(t)At + ER(t)AtZ




Molecular dynamics - solving egns.
MIRI = F;({R})

Many-body problem - need numeric solution (except in
very special cases)

Simplest method: ,forward Euler*:
. 1.
R(t + At) = R(t) + R(t)At + ER(t)AtZ

will not work!
1) is not time-reversible
2) suffers from energy drift

3) is numerically unstable (error 0(At®) in R and 0(At?)
in R)




Molecular dynamics - solving egns.

7 (Basic) Verlet algorithm

Force

R(t + At) = R(t




Molecular dynamics - solving egns.

7 (Basic) Verlet algorithm

Force Error O(AP)
At
R(t + At) = R(¢) + %At +At2 ROty
3

R(t — At) = R(t) —&At+p(t)At — R(t )At + O(AtY) +

m 2m 3!

R(t+ Ab) + R(t — At) = 2R(t) + P )/_\t2 +O(A D

R(t + At) ~ 2R(t) — R(t — At) + P(E) £ g2

m

1) is time-reversible _ _ _
The first step (R(t)) is obtained
2) conserves energy from the Euler method

3) numerically stable




Molecular dynamics - solving egns.

O Instability of trajectories

Trajectories that differ very slightly in their initial
conditions diverge exponentially > small discretization
errors can lead to very different results:

R(t) = f[{R}(0),{p}(0); t], R'(t) = f[{R}(0),{p}(0) + € ]
|IR(t) — R'(t)|~€eexp(At)




Molecular dynamics - solving egns.

O Instability of trajectories
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Molecular dynamics - solving egns.

O Instability of trajectories

Why should anyone believe in molecular
dynamics simulations??




Molecular dynamics - solving egns.

0 Instability of trajectories

Shadowing theorem: Although a numerically computed
trajectory diverges exponentially from the true trajectory
with the same initial coordinates, there exists an errorless
trajectory with a slightly different initial condition that
stays near ("shadows") the numerically computed one

This is merely a hypothesis for any realistic many-body
system (proven for some special cases)

Does Verlet algorithm generate “shadow” trajectories?

Ott, E. Chaos in Dynamical Systems. New York: Cambridge University Press, pp. 18-19, 1993




Molecular dynamics - solving egns.

3 Principle of minimal action
A true trajectory minimizes the action:

6 rt1 mv? B
5x(t) fto dt (T — V(x(t))> =0

Introducing discretization:

“truc” trajectory




Molecular dynamics - solving egns.

3 Principle of minimal action
A true trajectory minimizes the action:

5 (tq muv? _
2 Jto U (T B V(x(t))> =0
Introducing discretization:

d m (Xj41—x;)* _
T LiA (; L) V(xl-)) =0

At? ov(x;)
m 0Xx; -

0

2X; = Xjy1 — Xji—1 —

But this is Verlet algorithm!

In fact, Verlet algorithm gives a trajectory that is an exact
solution of Hamilton eqns with H(At) - H when At - 0




Molecular dynamics - uses

7 Statistical sampling
Static equilibrium properties:

H
(A) =— [ d*NR [ d*Npe T A(R, p)

Dynamic properties (correlation function):

(A(0)B(t)) =~ [ d*NR | d*Npe AR, p,0) B(R, p, t)

It is difficult to calculate ensemble averages, but...
ergodic hypothesis - need only time average




Molecular dynamics - uses

7 Statistical sampling
It is difficult to calculate ensemble averages, but...
ergodic hypothesis - need only time average
R2

(A) =~ [ dt AR(£), p(t))
(A(0)B(D)) = — [ dt'A(t)B(t + t)




Molecular dynamics - uses

[ Thermodynmic integration

How to accurately calculate phase transitions? Need to
know accurate AF = Fg — F,

liquid
F=—-kTInZ Z =), e "ER)/KT
Calculating F,4, then Fg, and taking difference is not

accurate if phases are described by different PES E, and Eg
(e.g., different force fields)




Molecular dynamics - uses

[ Thermodynmic integration

How to accurately calculate phase transitions? Need to
know accurate AF = Fg — F,

Consider E, =E; + A(Eg — Ey)
F/’[ — —lenZ/’[ Z/l = z Q_EA(R)/kT

R

Then

1

OF OF; (R

AF(A — B) = f a—;da = _ da %e-b‘a(ff)/’” da
0 0

1

AF(A—>B)=[<

0




Molecular dynamics - uses

[ Thermodynmic integration

How to accurately calculate phase transitions? Need to

know accurate AF = Fg — F,
1

0A

Ey = Ep + A(Eg — Ey) AF(A*B)=I<%>CM

0

1) Sample E; at different values of 4

2) Calculate ensemble-averaged 0E;/dA

3) Integrate (GE;/0dA)

-> Accurate free energies and phase transition conditions

Can be also used to calculate different contributions to free
energy (e.g., harmonic versus anharmonic), and for an
approximate versus accurate potential (force field versus DFT)




Molecular dynamics - uses

7 Statistical sampling
Example: absorption line-shape

[(w)~w? [ dte'**(D(0) - D(t))
with D(t) - instantaneous dipole moment of the system

Can also calculate diffusion coefficients, thermal
conductivity, viscosity




Molecular dynamics - uses

7 Statistical sampling
Example: thermal conductivity
Heat currentJ: j = AVT
Green-Kubo formula: 4 = 3VllcT2 fooo(j(O)j(t))dt
where microscopic heat current j(t) is determined by

j@) = Zivi%(mviz + % V(ri)) +%Zi<j Tij (Fij (v + ”j))




First-principles (ab initio) MD

0 Calculate forces from an ab initio potential V({R})

O Different flavors
Born-Oppenheimer MD
Car-Parrinello MD
Beyond Born-Oppenheimer MD (Ehrenfest, surface
hopping)

[ Reachable time scales (by Born-Oppenheimer
MD): tens of picoseconds to few nanoseconds




Born-Oppenheimer MD in practice

O Specify initial R(ty) and p(ty)

[ Converge electronic structure via a self-
consistent cycle ‘\

7 Calculate forces

7 Integrate the equations of motion to evolve R(t)

and p(t) j
7 Determine R(t + At) and p(t + At) and go to




Born-Oppenheimer MD in practice

O Specify initial R(ty) and p(ty)

[ Converge electronic structure via a self-
consistent cycle ‘\

7 Calculate forces

3 Integrate the equations of motion to evolve R(t)

and p(t) j
7 Determine R(t + At) and p(t + At) and go to




Born-Oppenheimer MD in practice

Energy fluctuations (arbitrary shifts)
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Born-Oppenheimer MD in practice

Energy fluctuations (arbitrary shifts)
L I | 1 1 I 1 I ¥ T | T 1 | ] [rrrrirrrrpgpreTT I(,
[CD.CD,' T ', ! T L ARG

What is a good time step?

Depends on the highest vibrational frequency

(smallest mass) in your system (w =~ /k/m)

Typically, time step is chosen ~1/10w,,, 44
(femtosecond time scale)

verlet At=0.5fs mu
| | | | | | | | . 0
) 0 005 0.1
Time [ps]




Born-Oppenheimer MD in practice

7 Read initial R(ty) and p(t,)

O Converge electronic structure via a self-
consistent cycle ‘\

7 Calculate forces

7 Integrate the equations of motion to evolve R(t)

and p(t) j
7 Determine R(t + At) and p(t + At) and go to




Born-Oppenheimer MD in practice
BOMD:

C,H,

T

' l

I I I I T

“not so” accurate

accurate
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Born-Oppenheimer MD in practice

7 Car-Parinello MD

Self-consistent cycle is computationally expensive - can
we avoid it? Yes, but with approximation

Extended Lagrangian: add (fictitious) degrees of freedom
for the electrons (KS orbitals) in the Lagrangian and

solve coupled equations of motion:
Lagrange multipliers

[Z M R2 @ / dr|i(r f dr} (v, t)6;(r,t) — z;,-]
Ko

Fictitious hn-Sham
electron mass orbitals satisfy constraints
at each time step

15V(¢ (p R)

M'Ifnt; = —-ViV(d,¢*;R) Hf;.f;z' = 9 Z ﬁf’} Ji'




Born-Oppenheimer MD in practice

7 Car-Parinello MD

Self-consistent cycle is computationally expensive - can
we avoid it? Yes, but with approximation

Extended Lagrangian: add (fictitious) degrees of freedom
for the electrons (KS orbitals) in the Lagrangian and
solve coupled equations of motion

Adiabatic separation: electron “mass” needs to be very
small — small time step (1/50 fs)

Electrons “follow” nuclei: No self consistency needed (at
each step)




Sampling canonical ensemble

O Thermostats
The idea: couple the system to a heat bath

H — Hsys _I_Hbath

conserves g:ergy \yields M_a_xweII-Bo_Itzmann distribution
of velocities for given T

Energy is
conserved System

Energy is
not conserved

Interesting because (i) experiments are usually done at
constant T, (ii) better sampling of conformations




Sampling canonical ensemble

[ Thermostats

Andersen: every n time steps, replace velocity of a
random particle by one drawn from a Maxwell-Boltzmann
distribution at target temperature - canonical ensemble in
the long-time limit, but slow equilibration, very sensitive to
n, kinetics are not preserved (e.g., wrong diffusion
coefficients)

Berendsen: Re-scale velocities by J 1+ (T() 1)) to

approach the target temperature T (T(t) = 2<Ek;;'(etlc)) )

quick relaxation to target temperature, does not sample
canonical ensemble




Sampling canonical ensemble

[ Thermostats

Andersen: every n time steps, replace velocity of a
random particle by one drawn from a Maxwell-Boltzmann
distribution at target temperature - canonical ensemble in
the long-time limit, but slow equilibration, very sensitive to
n, kinetics are not preserved (e.g., wrong diffusion
coefficients)

Nosé-Hoover: extended Hamiltonian (or Lagrangian)

pi &
R) + — + 3NkKTI
I 2M,772+V( )+2Q+ n(n)

fictitious oscillator

Hyy =




Sampling canonical ensemble

[ Thermostats
Nosé-Hoover: extended Hamiltonian (or Lagrangian)

pi p;
V(R) + — + 3NKTI

fictitious oscillator

HNH —

Momenta are damped by fictitious oscillator p; = F; — p—"p,

Q

S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985)




Sampling canonical ensemble

[ Thermostats
Nosé-Hoover: extended Hamiltonian (or Lagrangian)

pi p;
V(R) + — + 3NKTI

fictitious oscillator

HNH —

Momenta are damped by fictitious oscillator p; = F; — p—"p,

Q

A microcanonical simulation in the extended system
(including heat bath degrees of freedom) returns a
canonical ensemble for the original system; deterministic
(as opposed to stochastic)

S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985)




Sampling canonical ensemble

[ Thermostats
Nosé-Hoover: extended Hamiltonian (or Lagrangian)

pi p;
V(R) + — + 3NKTI

fictitious oscillator

HNH —

Momenta are damped by fictitious oscillator p; = F; — p—"p,

Q

Q must be chosen carefully: too small Q = non-
canonical, too large Q - large T fluctuations

S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985)




Sampling canonical ensemble

[ Thermostats
Nosé-Hoover: extended Hamiltonian (or Lagrangian)

2
pl pn
V(R
— 2M;7? W )+2Q

fictitious oscillator

+ 3NkTIn(n)

HNH —

p
Momenta are damped by fictitious oscillator p; = F; — 6"191

Ergodicity problems: system may be stuck in a region of
phase space; solution: Nosé-Hoover chains (attach
another fictitious oscillator to the first, and another to the

second, etc.)
Martyna, Klein, Tuckerman, J. Chem. Phys. 97, 2635 (1992)




Sampling canonical ensemble

[ Thermostats

Bussi-Donadio-Parrinello: target temperature follows a
stochastic differential equation:

[1 - T(_t)] atf |, ey = 2ABkinedo
T | 7} | 3k

Temperature White noise
rescaling

Very successful thermostat, weakly dependent on t

Pseudo-Hamiltonian is conserved

G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007)




NPT ensemble

) Barostats
Define instantaneous internal pressure:

2 1
P = E(Ekinetic + EZ[ R; - FI)

Similar schemes for barostats: pressure rescaling
(Berendsen), extended Hamiltonian/Lagrangian
(Andersen, Parrinello-Rahman),...

M. Parinello and A. Rahman, J. Appl. Phys 52, 7182 (1981)

Use thermostat together with a barostat to control
temperature and pressure




Quantum nuclei

[ Why is this important?
Protons in water and ice

PH OF WATER

T b
— PI.CPMD (300K) Y-S CLASSICAL WATER
-~ PI-CPMD (269K) R
o Experiment (296K)| 2=
+ Experiment (269K)

--- Boltzmann (300K) | 1
o0
(a) [

o

R e
(b)

L L L . !
n
4 "
000] E
~
ry - - \\
- 1 ~
R , &
4 1 1 1

i i - ' ‘ -t A ' s I
g 10 18 20 28 3 3 2 1
momentum (inverse angstrom) H20 * H20 DOH H20

2 1
Classical Distribution: n(p) < e™” K2mkgT) /N my
figure courtesy of Mariana Rossi

Path integral simulations: J. Morrone, RC, PRL 2008

Experiment: deep inelastic neutron scattering (DINS), G.
Reiter et al., Braz. J. Phys 2004




Quantum nuclei

3 When is this important?

® Relation between thermal De Broglie wavelength A and interparticle spacing [
h

- \/27kaBT
A>1 Akl

Low temperature, low mass
= nuclear quantum effects important

High temperature, high mass
= classical Boltzmann statistics are fine

Species = T(K) AA) Species = T(K) AA)

e

300

43.03

He

4

4.35

H

300

1.00

Li

|00

0.66

He

300

0.50

Cu

10

0.69

Li

300

0.38

: : hw
Systems approximately harmonic = S > 1= quantum (vibration dominated by ZPE)
B

T=300K corresponds to W=208cm-' = vibrations (much) above are influenced by ZPE




Quantum nuclei

O Path integral MD
Quantum canonical partition function (8 = 1/kT):

Z(B) = f do(x] e‘ﬁ(ﬂv)‘x)

configuration eigenstates of position operator
coordinate (Vlx) = V(x)|x})

¥ and T do not commute = use Trotter decomposition

pv BT BV
Z(B) = gim fdx(xlﬂplx) () =e 2Pe Pe 2P




Quantum nuclei

O Path integral MD
Quantum canonical partition function (8 = 1/kT):

BV _BT _BV
Z(p) = llim fdx(xlﬂplx) () =e¢ 2Pe Pe 2P

Sl =1 208 = Jim | ] Jax: mlalw)wilxs) . cplal)

Calculate the matrix elements (V|x) = V(x)|x)):

BV BT _pV
(x;|Qlx;41) = (x;le 2Pe P e 2P|x;q)
_ BV (xi) _BT BV (Xit1)
=e 2P (xjle P|x;;q)e 2P




Quantum nuclei

O Path integral MD
Quantum canonical partition function (8 = 1/kT):

pvV BT BV
Z(p) = llim fdx(xlﬂplx) () =e¢ 2Pe Pe 2P

Sl =1 208 = Jim | ] Jax: mlalw)wilxs) . cplal)

_BV BT BV
(x| Qfx;11) = (x;le 2Pe Pe 2P|x;4q)
_BV(x) _BT _BV(Xi+1)
=e 2P (xle P|x;iq)e 2P

o e el
el =1 > (ale™ P i) = f dp (eilp) \ple™ P |xis

eigenstates of momentum operator (T|p) = (p?/2m)|p))




Quantum nuclei

O Path integral MD
Matrix elements:

R _BT _BT
fdﬁLP)(Pl =1 > (xjle Plxj1q1) = fdp (xi|P)<P‘€ P ‘xi+1>

eigenstates of momentum operator (T|p) = (p?/2m)|p))

1 Ipx
(x|p) = N b h =2

=

1 ppr*
B_T‘xi+1> = Jdpe_ZmPel'P(xi—xiﬂ)/fl

_BT
(xile P lxjyq1) = Jdp(xilp)<p
21Th

mP 1/2
= (znﬁh?-) eXp[_




Quantum nuclei

O Path integral MD
Matrix elements:

2 = Jim [ | Jdx tralolo) e 0lxs) . Grplal)

BV (xi) _BT BV (Xit+1)
(x;[Qlxipq1) =€ 2P (xle Plxjq)e 2P

BT 1/2
(xile_Tlel) — T > expl (xl xl+1) ]

2Bh2

(x;|1Q)x;44) = ( - xl+1)2 'B (V(xi) + V(xi+1))]




Quantum nuclei

O Path integral MD
Partition function:

Z(,B) = Ili_r}(}ozp(ﬁ),

mpP P/
Zp(B) = (2nﬁh2> fdxl wdxpexp—BUqsr(xq, ... xp)]

-

1 (P

Uerr(x1, .- Xp) = z z”’l(ﬁ
—

l

Q - @ |
Q™ @

o %®

)2 (x; — xi41)% + lV(x-)
l 1+1 P l




Quantum nuclei

O Path integral MD
Partition function:

Z(,B) — gi_r}(}ozp(ﬁ)
zp(ﬂ)=(2;nﬁh2> falx1 dxpexp—BUqsr(xq, .. xp)]

Ueff(xl, Xp) =

P
=1

)2 (x; — xi41)% + lV(x-)
l 1+1 P l

1 VP
™| 5

“Xp+1=X1

No momenta?!? No problem! fictitious momenta
and masses

Zp(B) = (2 ,Bh2> Jndlel_[dxlexp eff(x1 xp)>




Quantum nuclei

O Path integral MD
Partition function:

Z(,B) — gi_r}(}ozp(ﬁ)
zp(ﬂ)=(2;nﬁh2> falx1 dxp exp[—BUegrr(x1, ... %p)]

Zp(B) = <2nﬁh2> jl_[dpl j ﬂdxl exp|—p (:1 223\21_ + Ugpr(xy, ...xp)>]

Gaussians are easy to integrate 9
P

P

ZP(.B) — | l
1

1=

27TMl' 2
(0

a constant at fixed T —




Quantum nuclei

O Path integral MD
Sampling the effective potential:

7o (8) = (

2mBh?

) jndpljl_[dxlexp —[3< & zpl\i; 4+ Ueff(xl,...xp)>

i=1

)2 (x; — x; 1)2 +1V(x)
i i+ D i




Quantum nuclei

O Path integral MD
Sampling the effective potential:

Zp(B) = (2n,8h2> Jl_[dplfl_[dxlexp —,l?( P ij\izi + Uery(x1, ...xp)>

i=1

P T, JB\2 g :
Ueff(xlr---xP)zz 2™\ B (X — Xi41) +Ev(xi)

i=1 |

“Xp+1=X1

Evolve several images of the system|(“beads”) connected
by springs

Each bead evolves at temperature P - T

P is determined by how “quantum” the system is

P > Bhwyg, (typically between 10 and 100)




Monte Carlo (random) sampling

7 Calculation of integrals numerically
Consider a multidimensional integral: 1[f] = [ f(X)d"X

How to calculate it numerically? 1) Choose a regular grid
in Q. However, for a very modest sampling of 10 points
per direction, we need to calculate f(X) at 10™ points -
not practical for M > 10

2) Choose points in Q randomly - the “curse of
dimensions” is alleviated

Is a uniform distribution of the random points a good
choice?




Monte Carlo (random) sampling

7 Calculation of integrals numerically

FOO )
Ilf] = |, fX)d"X

Obviously, in this case uniform sampling is not the best
choice: the error in I[f] converges very slowly with
number of samples N:

ol = () Va;,(f), Va‘l‘”g) = ﬁ ?]:1 (f(Xl) _% ?]=1f(XJ' )2

variance




Monte Carlo (random) sampling

O Importance sampling
Perform a trivial transformation:

= [pfxaMx = [, L2 wx)atx
if w(X) =0, [,w(X)d"X = 1, this looks like an

expectation value of f(X)/w(X) for X distributed
according to probability density w(X):

1 X
]~ 2L, 228, w(X) - X,
This gives freedom to minimize the variance by a proper
choice of w(X). In particular, if w(X) = Cf(X), the
variance is zero. In practice, w(X) = Cf(X) is a very
good choice (importance sampling)




Monte Carlo (random) sampling

O Importance sampling
Perform a trivial transformation:

1 (Xi)
IIf] =~ 52?21%, w(X) - X;

How to generate {X;} according to w(X)?
Metropolis algorithm: (1) generate a set of X;; (2) choose

randomly a displacement AX; for each i; (3) replace X;
with X; = X; + AX; with the probability:

/ . w X:
Paccept(Xi - Xi) = min (1; WEXL;)

(4) continue until convergence
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller, J. Chem. Phys. 21, 1087 (1953)




Monte Carlo (random) sampling

7 Calculation of integrals numerically

/ . w X{
Paccept(Xi - Xi) = min (1; WEXiz)

This follows from detailed balance in equilibrium:
wX)P(X; - X;) = w(X)PX; - X;)

Detailed balance is sufficient (although not necessary) for
equilibrium:

> WXDP(X; > XD = ) wXDP(X; - X))
X X

Metropolis, Rosenbluth, Rosenbluth, Teller, Teller, J. Chem. Phys. 21, 1087 (1953)




Monte Carlo sampling - applications

O Computing statistical averages
deNRf dBNpA(R,p)e_H(R’p)/kT

<A) - deNRf dBNp e—H(Rp)/kT

_H(R,p)
e KT

[N R 43Ny c-HEpT 1S 8 natural choice for w(X) for

Monte Carlo integration of thermodynamic averages
(easily extendable to ensembles other than canonical;
kinetic energy integral can often be taken analytically)




Monte Carlo sampling - applications

[ Combining MD and MC - replica-exchange
(parallel tempering) MD

A




Monte Carlo sampling - applications

7 Replica-exchange (parallel tempering) MD

1 1 .
B~ EDGar, — ) ) This

ensures canonical ensemble at each temperature




Metadynamics

0 Sampling rough potential-energy surfaces

The time scale for evolving from A - B is much larger
than practically accessible MD time scales (<1 ns)

B

Molecular
Dynamics

For example, a small protein folds in 104 s = 1011 time
steps (~1 fs)




Metadynamics

0 Sampling rough potential-energy surfaces

The time scale for evolving from A - B is much larger
than practically accessible MD time scales (<1 ns)

B

Molecular
Dynamics

Idea: Introduce a bias potential to push the system out of
the local minima




Metadynamics

0 Sampling rough potential-energy surfaces

The time scale for evolving from A - B is much larger
than practically accessible MD time scales (<1 ns)

V(R,t, + At)
A

Idea: Introduce a bias potential to push the system out of

the local minima
A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

0 Sampling rough potential-energy surfaces

The time scale for evolving from A - B is much larger
than practically accessible MD time scales (<1 ns)

V(R, t, + 2At)
A

Idea: Introduce a bias potential to push the system out of

the local minima
A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

0 Sampling rough potential-energy surfaces

The time scale for evolving from A - B is much larger
than practically accessible MD time scales (<1 ns)

V(R,t, + NAt)

A

Idea: Introduce a bias potential to push the system out of

the local minima
A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

0 Sampling rough potential-energy surfaces

Idea: Introduce a bias potential to push the system out of
the local minima

l

t =
V(s,t) = jdt’w exp<_2(5i(R) ‘ij(R(t ) >

to L

Add a Gaussian every time step at
every visited point on PES (continuous
A direct metadynamics)

e
S; (R) - collective variable

A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

0 Sampling rough potential-energy surfaces

Idea: Introduce a bias potential to push the system out of
the local minima

collective variables

t rd :
V(S,t) = jdt’w exp —2 (Si(R) _Zjl:Z(R(t ))

to

Add a Gaussian every time step at

every visited point on PES (continuous
direct metadynamics)

> The “magic” (in fact, rigorously
S;(R) - collective variable proven):

V(S,t > ) = —F(S) + constant
A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

0 Sampling rough potential-energy surfaces

Idea: Introduce a bias potential to push the system out of
the local minima

t

V(S t) = jdt’a) exp| —

to

2 Si(R) — S;(R(t")”
l_ 20

V(S,t > o) = —F(S) + constant

To reduce oscillations around F(S):
decrease Gaussian deposition rate with
time (well-tempered metadynamics)

e
S; (R) - collective variable

A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

3 Collective variables
“Identifying a set of CVs
appropriate for describing
complex processes
is far from trivial”

|
F-S

F(s1) /keT

1
=

& 205

A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

3 Collective variables
“Identifying a set of CVs appropriate for describing

complex processes is far from trivial”
1) S(R) = R - inefficient for complex PES

2) Principal component analysis of data
from a preliminary sampling

3) Along reaction coordinate (NEB) plus
distance from the path

e
S; (R) - collective variable

A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Metadynamics

O Applications

1) Predicting equilibrium crystal structures at a given
thermodynamics condition

2) Diffusion
3) Solid-liquid interface free energy (difficult to measure
experimentally)

4) Chemical reactions
5) Protein folding

A. Barducci, M. Bonomi and M. Parrinello, WIREs Comput Mol Sci 1, 826 (2011)




Monte Carlo sampling - applications

[ Reaction kinetics - kinetic MC (kMC)

kB—A

N
kA— ﬁ
AE A—B
A

Transition State Theory
_ (kBT) Z15(i->) Molecular

Dynamics Master equation

dfc)}f) B _Z ki—)jPi(t) +Z kf—”'Pj @)




Monte Carlo sampling - applications

[ Reaction kinetics - kinetic MC (kMC)
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Molecular Dynamics: Kinetic Monte Carlo:
the whole trajectory coarse-grained hops

ab initio MD: ab initio KMC:
up to 50 ps up to minutes




Monte Carlo sampling - applications

3 Crucial ingredients of kMC

1) Elementary processes

> i" Fixed process list vs. ,,on-the-fly*“ kMC
|- Lattice vs. off-lattice kMC

2) Process rates

PES accuracy
Reaction rate theory




Monte Carlo sampling - applications

Adsorption: CO - unimolecular, O, — dissociative

' no barrier
/.I.H\ N rate given by impingement &k ~ Syp /(2zmkgT)

7///////////////% Desorption: CO - 1st order, O, — 2nd order

out of DFT adsorption well (= barrier)
prefactor from detailed balance

«*—» “Q Diffusion: hops to nearest neighbor sites

PP FFFFFFFFFFF AT TS

7///‘//////////’//% site and element specific

barrier from DFT (TST)
prefactor from DFT (hTST)

\ Reaction: site specific
, immediate desorption, no readsorption

W///M barrier from DFT (TST)

prefactor from detailed balance

26 elementary processes
considered K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)




Monte Carlo sampling - applications

T'=600 K

Poz =1 atm Pco = 7 atm

40 | \i‘il‘i” !I'Hl i!," !II

Site occupation number (%)

0.4
Time (s)

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)

K. Reuter, C. Stampfl, and M. Scheffler, Handbook of materials modeling,
part A. Methods, p. 149, Springer, Berlin (2005)




Monte Carlo sampling - applications

pPo, (atm)
10710
|

[ kMC phase diagrams

600K 5, (atm)

107151010105 1 105
108
COP/COess

Obr/ > Obr /()cus

kinetics thermodynamics




Monte Carlo sampling - applications

3 (Po2s Pco)-map of catalytic activity

600 K Po (atm) Po (atm)

10151019105 1 105 10-° 105 1

105 -
COP/COes

K. Reuter, D. Frenkel and M. Scheffler, Phys. Rev. Lett. 93, 116105 (2004)




Conclusions

7 Molecular dynamics - system dynamics at finite T

enslemble average from time average, diffusion
coefficients, thermal conductivity, viscosity

7 Monte Carlo - clever random walks

calculating integrals by random sampling, ensemble
averages, electronic problem, long-time kinetics

[ Combined - replica-exchange (parallel
tempering) MD
better sampling of configurational space




