FHI-aims capabilities for molecules, clusters, and solids

FHI-aims

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

Main focus:

 Accurate all-electron electronic-structure calculations (DFT and beyond) for both periodic and cluster/ molecular systems

• Massively parallel

Robust interface: atomic simulation environment (ASE)

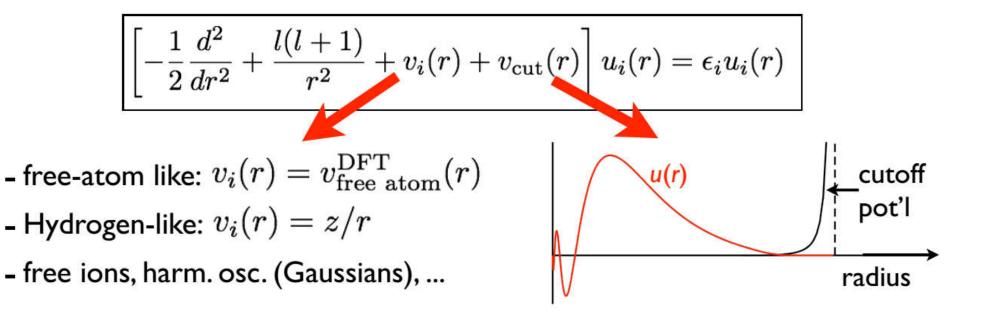
Approximations to the electronic problem: Basis set Idea: represent all unknown functions ($\rho(\mathbf{r}), \psi_i(\mathbf{r})$) as a linear combination of known functions with well-defined properties: $\psi_i(\mathbf{r}) = \sum_p C_{ip} \varphi_p(\mathbf{r})$ Widely used basis sets:

gaussians $x^i y^j z^k \exp(-\alpha r^2)$ (localized, analytic integrals)

plane waves $exp(i\mathbf{k} \cdot \mathbf{r})$ (delocalized, analytic integrals)

Slater-type $x^i y^j z^k \exp(-\alpha r)$ (localized, nuclear cusp)

grid-based $\delta(\mathbf{r} - \mathbf{r}_i)$ (localized, analytic integrals)


Core electrons are often treated separately (pseudopotentials, planewave + localized basis)

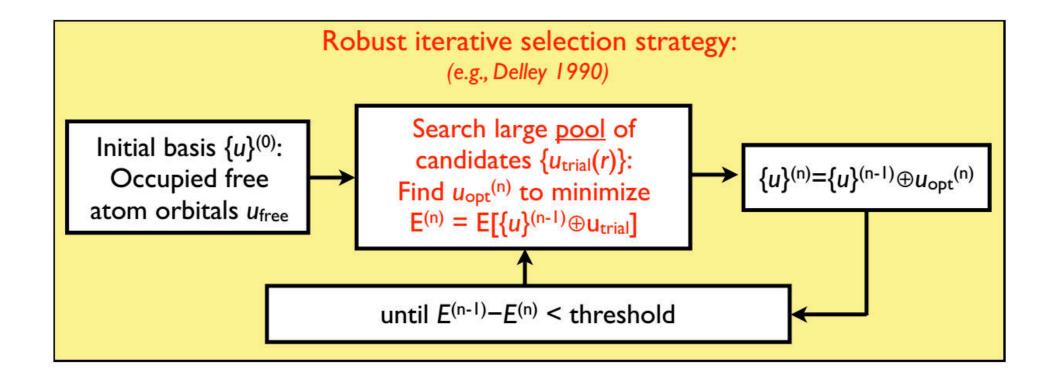
The basis set: Numeric atomic orbitals

$$\left[arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)
ight]$$

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

• $u_i(r)$: Flexible choice - "Anything you like."

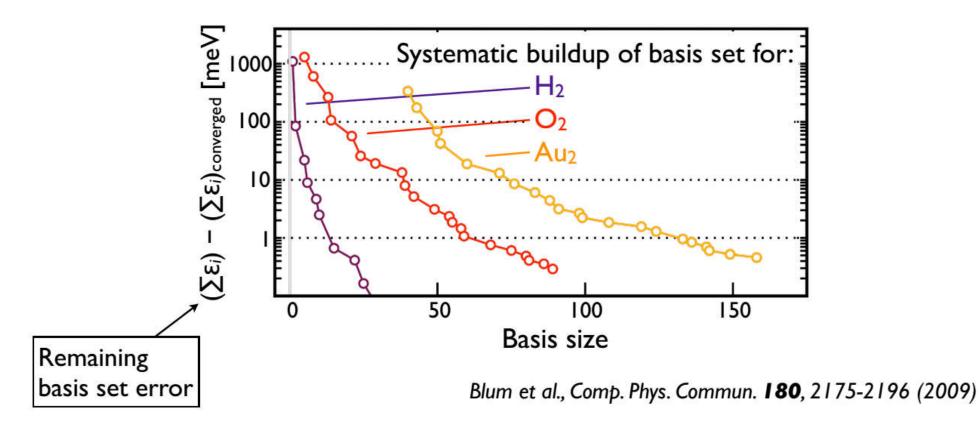
The basis set: Numeric atomic orbitals


$$\left[arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)
ight.
ight.$$

• $u_i(r)$: Flexible choice - "Anything you like."

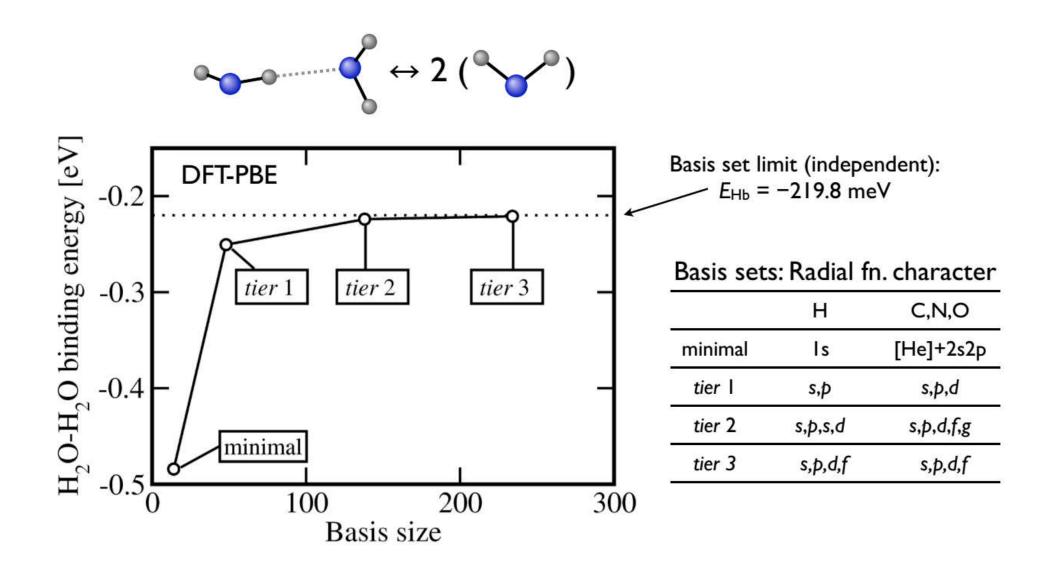
Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important
- → We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations -<u>efficient and accurate approach</u>


V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

<u>"Pool" of trial basis functions:</u> 2+ ionic *u(r)* Hydrogen-like *u(r)* for *z*=0.1-20

Optimization target: Non-selfconsistent symmetric dimers, averaged for different *d*

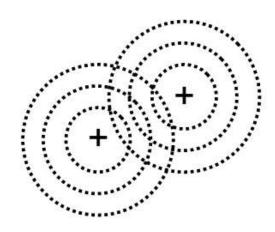

Pick basis functions one by one, up to complete total energy convergence

Systematic hierarchy of ets, iterative onstruction dimers

"First	tier ((level)	"
		(,	

Systematic ni		Au	0	С	Н	
basis (sub)set	_	$[\mathrm{Xe}]{+}6s5d4f$	$[\mathrm{He}]{+}2s2p$	$[\mathrm{He}]{+}2s2p$	1s	minimal
automated co based on	<u></u>	$Au^{2+}(6p)$	H(2p, 1.8)	H(2p,1.7)	H(2s, 2.1)	Tier 1
Dased OII		H(4f, 7.4)	H(3d, 7.6)	H(3d, 6.0)	H(2p, 3.5)	
"First tier (level		$Au^{2+}(6s)$	H(3s, 6.4)	H(2s, 4.9)		
		H(5g,10)				
		${\rm H}(6h,\!12.8)$				
	J	${\rm H}(3d,\!2.5)$				
		${\rm H}(5f{,}14.8)$	$\operatorname{H}(4f{,}11.6)$	${\rm H}(4f,\!9.8)$	H(1s, 0.85)	Tier 2
		H(4d, 3.9)	H(3p, 6.2)	${\rm H}(3p,\!5.2)$	${\rm H}(2p,\!3.7)$	
"Second tier"		$_{\rm H(3p,3.3)}$	H(3d, 5.6)	H(3s, 4.3)	H(2s,1.2)	
	\int	$\operatorname{H}(1s,\!0.45)$	$_{\rm H(5g,17.6)}$	${\rm H}(5g,\!14.4)$	$\mathrm{H}(3d,\!7.0)$	
		$_{\rm H(5g,16.4)}$	$\operatorname{H}(1s,\!0.75)$	$_{\rm H(3d,6.2)}$		
	_)	${\rm H}(6h,\!13.6)$				
)	$\mathrm{H}(4f,\!5.2)^*$	$O^{2+}(2p)$	${\rm H}(2p,\!5.6)$	${\rm H}(4f,\!11.2)$	Tier 3
		$\mathrm{H}(4d,\!5.0)$	${\rm H}(4f,\!10.8)$	H(2s, 1.4)	${\rm H}(3p,\!4.8)$	
"Third <i>tier</i> "	$\left\{ \right.$					

The basis set: additional parameters to converge


$$h_{ij} = \int d^3 r \varphi_i(oldsymbol{r}) \hat{h}_{\mathrm{KS}} \varphi_j(oldsymbol{r})$$

Discretize to integration grid:

$$\int d^3r f(m{r})
ightarrow \sum_{m{r}} w(m{r}) f(m{r})$$

... but even-spaced integration grids are out: f(r) strongly peaked near all nuclei!

- Overlapping atom-centered integration grids:
 - Radial shells (e.g., H, light: 24; Au, tight: 147)
 - Specific angular point distribution ("Lebedev") exact up to given integration order l (50, 110, 194, 302, points per shell)

Pioneered by Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Electronic structure methods

Quantum chemistry & many-body theory:

 $\hat{\mathcal{H}}\Psi = E\Psi$

... successive refinement of ψ

"Perdew's ladder"

to exact solution

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

 $E_{tot} = E[n(r)] = T_s[n] + V[n] + V_{es}[n] + E_{xc}[n]$

• Key practical approximation: E_{xc} response / many-body terms: RPA, SOSEX, ... hybrid functionals: non-local exchange meta-GGAs: $\nabla^2 n(r), \nabla^2 \phi(r)$ Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): n(r)

Standard DFT and the self-interaction error

$$E_{\text{tot}} = T[n] - \sum_{I=1}^{M} Z_I \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_I|} d^3r + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r d^3r' + E_{\text{XC}}[n]$$

exchange-
(includes self-
interaction) (XC) energy

LDA, GGA, meta-GGA:
$$E_{\rm XC}[n] = E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$$

Standard DFT: (Semi)local XC operator → low computational cost

Removing self-interaction + preserving fundamental properties (e.g., invariance with respect to subspace rotations) is non-trivial → residual self-interaction (error) in standard DFT

Consequences of self-interaction (no cancellation of errors): localization/delocalization errors, incorrect level alignment (charge transfer, reactivity, etc.)

The Hartree-Fock (HF) approximation

$$\Psi(\mathbf{r}_{1}\sigma_{1}, \mathbf{K}, \mathbf{r}_{N}\sigma_{N}) = \frac{1}{\sqrt{N!}} \det[\psi_{1}(\mathbf{r}_{1}, \sigma_{1}), \mathbf{K}, \psi_{N}(\mathbf{r}_{N}, \sigma_{N})]$$

one-particle states

$$E_{\text{tot}} = \sum_{n=1}^{N} \left\langle \psi_{n} \left| \hat{h} \right| \psi_{n} \right\rangle + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_{I} Z_{J}}{\left| \mathbf{R}_{I} - \mathbf{R}_{J} \right|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{\left| \mathbf{r} - \mathbf{r}' \right|} d^{3}r d^{3}r' - \frac{1}{2} \sum_{m,n=1}^{N} \int \frac{\psi_{m}^{*}(\mathbf{r},\sigma)\psi_{n}^{*}(\mathbf{r}',\sigma')\psi_{n}(\mathbf{r},\sigma)\psi_{m}(\mathbf{r}',\sigma')}{\left| \mathbf{r} - \mathbf{r}' \right|} d^{3}r d^{3}r' d\sigma d\sigma'$$

HF (exact) exchange energy

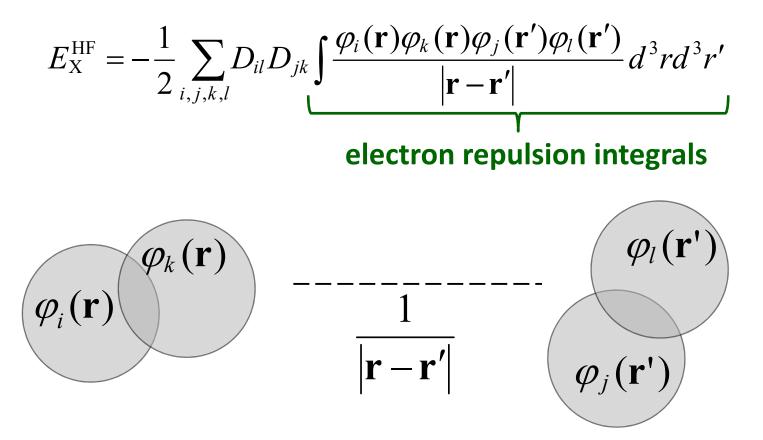
- No self-interaction
- Coulomb mean-field \rightarrow no dynamic correlation, single determinant \rightarrow no static correlation

Hybrid DFT

$$E_{\rm XC}[\{\psi\}] = \alpha E_{\rm X}^{\rm HF}[\{\psi\}] + (1-\alpha)E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$$

-- easy in Kohn-Sham formalism ($n = \sum_{n} f_{n} |\psi_{n}|^{2}$)

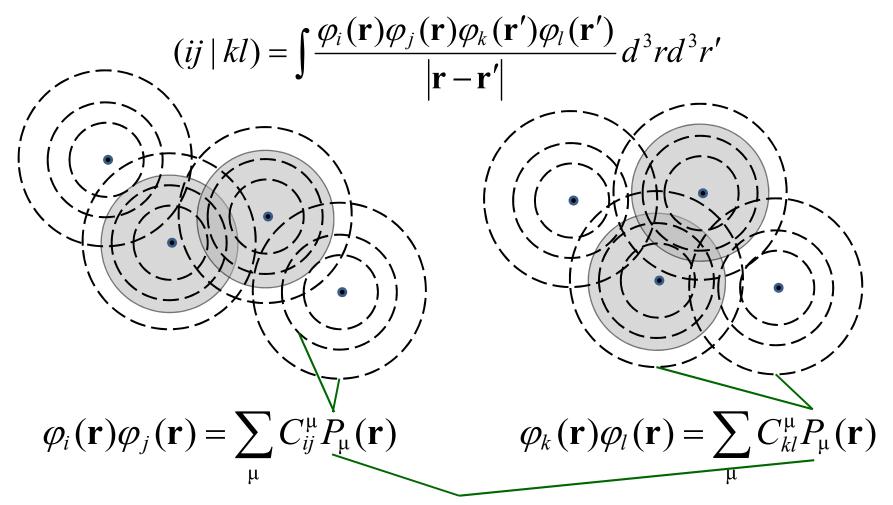
Perdew, Ernzerhof, Burke (J. Chem. Phys. 105, 9982 (1996)): α = 1/N


MP4 \rightarrow N = 4, but "An ideal hybrid would be sophisticated enough to optimize N for each system and property."

Range-separated functionals: HSE family

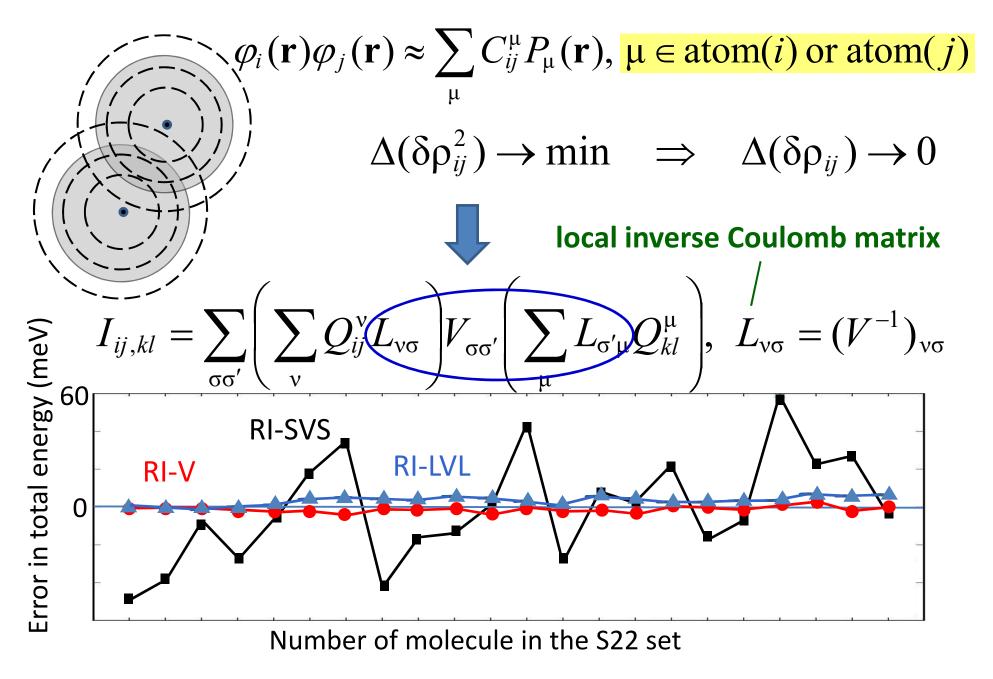
 $\frac{1}{r} = \frac{1 - \operatorname{erf}(\omega r)}{r} + \frac{\operatorname{erf}(\omega r)}{r}$ short-range (SR) long-range (LR)

 $E_{\rm XC}^{\rm HSE} = \alpha E_{\rm X}^{\rm HF,SR}(\omega) + (1-\alpha)E_{\rm X}^{\rm PBE,SR}(\omega) + E_{\rm X}^{\rm PBE,LR}(\omega) + E_{\rm C}^{\rm PBE}$

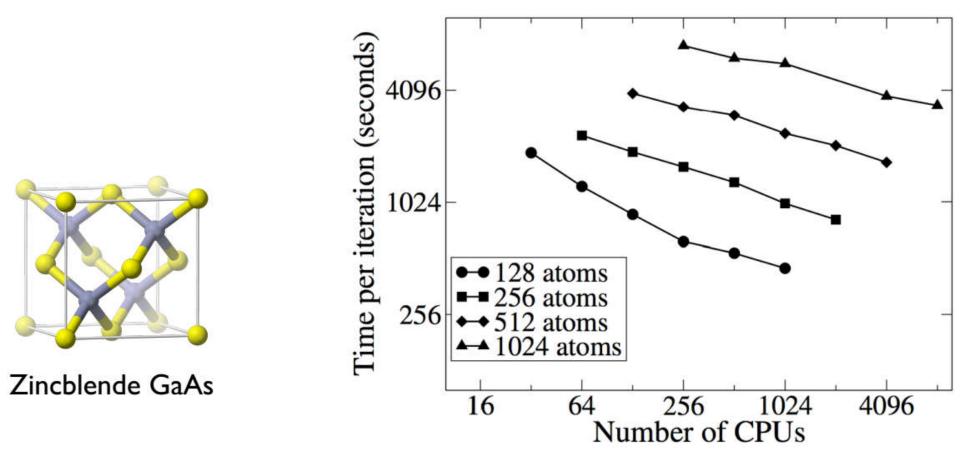

Hartree-Fock exchange – the problem

Lots of integrals, naïve implementation $\rightarrow N^4$ scaling (storage impractical for N > 500 basis functions)

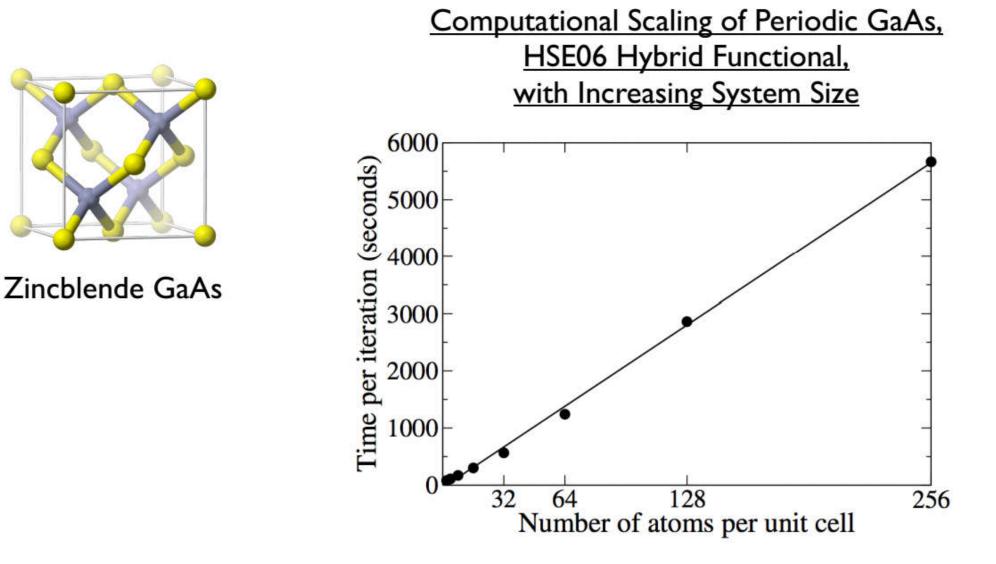
- need fast evaluation
- need efficient use of sparsity (screening)


"Resolution of identity" (RI) (density fitting)

independent auxiliary basis


Basis-pair space is overcomplete, since $\{\varphi_i(\mathbf{r})\}$ approaches completeness \rightarrow size of $\{P_\mu(\mathbf{r})\}$ ~4-5 times size of $\{\varphi_i(\mathbf{r})\}$

Localized RI-V (RI-LVL, Jürgen Wieferink)


Hybrid functionals in FHI-aims

<u>Computational Scaling of Periodic GaAs,</u> <u>HSE06 Hybrid Functional,</u> <u>with Increasing System Size</u>

Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, Comp. Phys. Commun. **192**, 60-69 (2015).

Hybrid functionals in FHI-aims

Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, Comp. Phys. Commun. **192**, 60-69 (2015).

Practicalities

mkdir your_name

Important to make different directories! Otherwise you will overwrite other's files

cd your_name

Copy the folder tutorial_2 from \$HandsOn to your working directory:

For every exercise, the sample input files and solutions can be found in \$HandsOn/tutorial_2/skel/exercise_XX/templates and \$HandsOn/tutorial_2/solutions, respectively.

Part I: atom and molecule Problem I: Hydrogen atom

Tasks:

- Input files needed to run FHI-aims.
- Test the convergence of the total energy with basis size.
- Compare the total energy of the hydrogen atom computed with different methods implemented in FHI-aims. Do all methods converge to the same result?

FHI-aims input files

geometry.in

z

Atomic structure

х

#

У atom 0.0 0.0 0.0 H atom 1.0 0.0 0.0 H initial_moment 1.0

That's a comment

Units: Positions in Å Energies in eV

control.in

Physical model settings xc pw-lda charge 0. spin collinear

SCF convergence settings

sc_accuracy_eev 1E-2

- sc_accuracy_etot 1E-5
- sc_accuracy_rho 1E-4
- sc_iter_limit 100
- **#** Species specifics

. . .

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

light

Increased accuracy:

- tight
- really tight

Basis Hartree potential Basis cutoff potential Integration grids

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Default basis sets

.../species_defaults

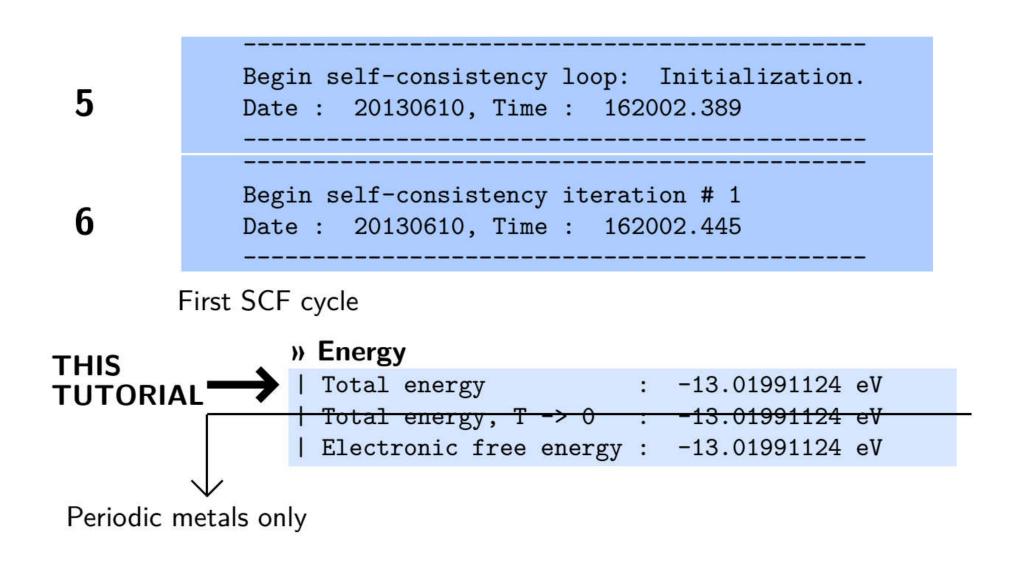
Predefined species Copy-paste into control.in

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests


Additionally converge "tiers"

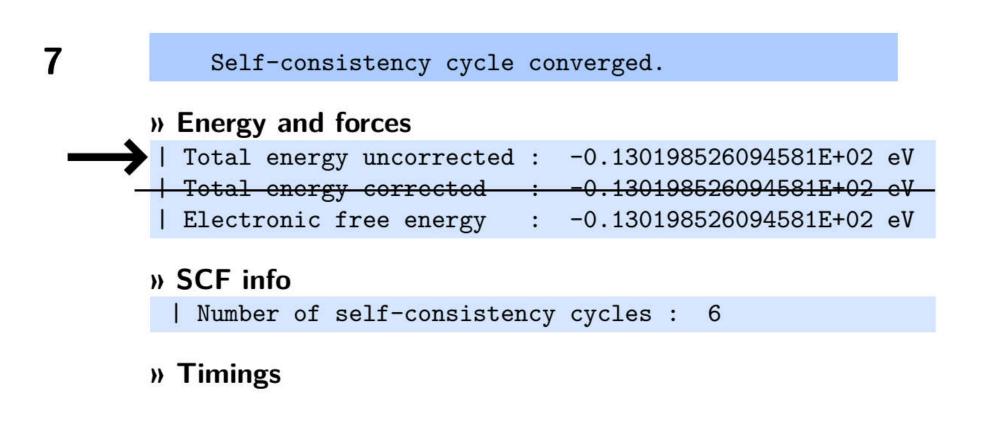
1	Invoking FHI-aims
2	Reading file control.in.
3	Reading geometry description geometry.in.
4	Preparing all fixed parts of the calculation.

Geometry independent preparations Basis set generation

Begin self-consistency loop: Initialization. Date : 20130610, Time : 162002.389

Geometry dependent preparations Integration grid Initialization of charge density

Begin self-consistency Date : 20130610, Time	
Begin self-consistency Date : 20130610, Time	


First SCF cycle

}}	Self-co	nsis	tency convergence a	acc	uracy
1	Change	of	charge density	:	0.6753E-02
I	Change	of	sum of eigenvalues	:	0.4376E+00 eV
I	Change	of	total energy	:	0.1143E-01 eV

Begin self-consistency loop: Initialization Date : 20130610, Time : 162002.389	o i i			
Date : 20130610, Time : 162002.389		Begin	self-consistency	loop: Initialization
	Begin self-consistency iteration # 1	Date :	20130610, Time	: 162002.389
	Begin self-consistency iteration # 1			
	Begin self-consistency iteration # 1			
Date : 20130610, Time : 162002.445		Date .	20130610 Time	162002,445

Sixth SCF cycle

}	Self-co	nsis	tency convergence a	acc	uracy
Ι	Change	of	charge density	:	0.3163E-05
I	Change	of	sum of eigenvalues		9415E-05 eV
I	Change	of	total energy		0.2388E-10 eV

Have a nice day.

Self-consistency cycle converged.

Postprocessing

Structure optimization

- » Get next relaxation step
- » Redo SCF for new geometry

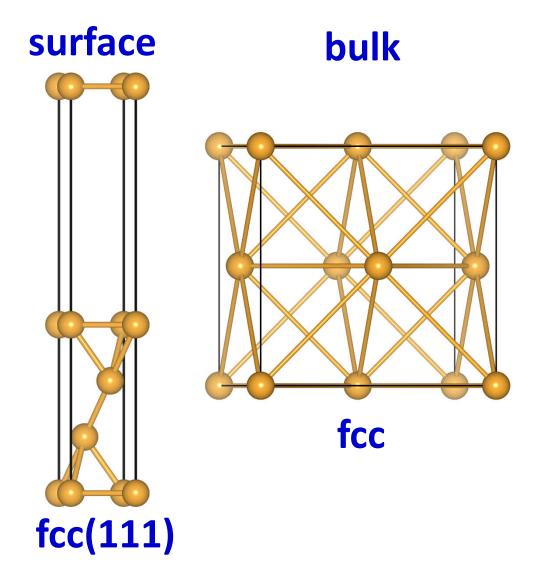
Have a nice day.

8

Problem II-III: H₂

Tasks:

- Learn how to optimize geometry with FHI-aims.
- Calculate relative energies of different spin states.
- Calculate the atomization energy (ΔH_{at}) .
- See how geometry and atomization energy depend on the exchange-correlation functional.


Problem II-III: H₂ From now on, run FHI-aims via the batch system:

1) copy the file job.sh from the tutorial folder to your working directory

```
2) submit a job:
sbatch --ntasks=XX job.sh
```

3) To see the progress, type tail -f output

Part II: periodic system

geometry.in

lattice_vector	4.0	0.0	0.0
lattice_vector	0.0	4.0	0.0
lattice_vector	0.0	0.0	4.0
atom	0.0	0.0	0.0 Si
atom	0.0	2.0	2.0 Si
atom	2.0	0.0	2.0 Si
atom	2.0	2.0	0.0 Si

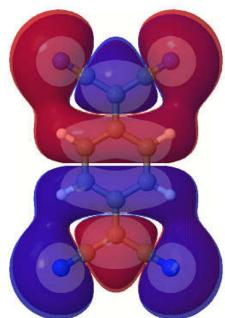
Important practical points

Each calculation one directory, for example

- > mkdir tutorial1
- > cd tutorial1
- > mkdir O2
- 2 input files (plus 1 for pseudopotential embedding)

geometry.in
control.in

Launching FHI-aims calculation


sbatch --ntasks=XX job.sh

Visualization

Orbitals and densities

Keyword in control.in

output cube eigenstate homo
cube filename HOMO.cube
output cube total_density
cube filename tot_dens_uc.cube

Get: *.cube file - values on a regular 3D grid. Software: jmol

 \Rightarrow Appendix of handout