
FHI-aims Tutorial

Basics of Electronic-Structure Theory with

FHI-aims: Atoms and Molecules

Tutorial I and II: Basics of Electronic-Structure Theory

Manuscript for Exercise Problems

Prepared by Debalaya Sarker, Zhong-Kang Han and Sergey V. Levchenko

Advanced Materials Modeling

Skoltech, May 7, 2020

A quick summary of the exercises
A guideline through the tutorial
This tutorial aims to give a basic introduction to electronic structure calculations for very simple systems. As every
DFT code has its own philosophy, this tutorial should also familiarize you with fundamental aspects of using FHI-aims.
The goal of the first section is to explain the basic inputs of FHI-aims and to demonstrate that DFT calculations
can have predictive power for many observable quantities. The second part introduces geometric optimization of a
molecule and how to assess the reliability of the result. Some exercises are marked with a red exclamation mark (!).
These exercises demonstrate pitfalls or limitations of the approach.
The practice session consists of three parts:

Part I: Basic electronic structure with FHI-aims

Problem I: Total energy of free atoms
The hydrogen atom

Problem II: Hydrogen Molecule(H2): bond length !

Part II: Local structure optimization

Problem III: Hydrogen Molecule H2

As first step please copy the folder tutorial_2 from $HandsOn to your working directory.

Copy $HandsOn/tutorial_2 to your working directory:

• cp -r $HandsOn/tutorial_2 .../Your_Working_directory/

For every exercise, we also provide solutions and sample input files. They can be found in $HandsOn/tuto-
rial_2/solutions and $HandsOn/tutorial_2/skel/exercise_XX/templates, respectively. However, we strongly recom-
mend to use the provided input files only in case of time shortage. You will maximize your learning progress by trying
to generate the input files on your own. In case you get stuck with a particular problem, do not hesitate to ask one of the
tutors. For the tutorials, an executable of FHI-aims will be provided on your workstation at $HandsOn/bin/aims.x.
However, you have to submit the jobs to queue with submission script $HandsOn/job.sh

Note: Please do not copy and paste the description in this pdf into your input files. Typically,
invisible characters from the formatting are copied, too. FHI-aims will reject these characters and
your calculations will not start.

The very basics of FHI-aims
Each calculation should be done in a separate directory containing the two mandatory input files control.in and
geometry.in. FHI-aims is then called in this directory.

In short:

• Each calculation in a separate directory

• 2 input files:
– control.in

– geometry.in

• copy submission script to working directory
– $HandsOn/job.sh Path_to_Your_working_directory/
– Start calculation

sbatch job.sh

2

The above starts a calculation on a single processor, shows the main output on the screen and, at the same time, pipes
it to the output file. The output file contains the basic information and results of the calculation such as the total
energy, atomic forces, and so forth. Additional output files might be generated according to the specified settings.
NOTE:

:

• Depending on the job in hand, you can modify the wall time in the submission script
job.sh in each calculation directory.

#!/ bin/sh
SBATCH -p xavier
SBATCH -J test
SBATCH -t 00:05:00
SBATCH -N 1
SBATCH -n 1

module load intel/mkl -11.2.3 mpi/impi -5.0.3
mpirun -np $SLURM_NTASKS $HandsOn /bin/aims.x >& output

Figure 1: Sample submission script. You may alter the wall time # SBATCH -t, number of nodes # SBATCH -n depending
on the job in hand.

Nuclear positions: geometry.in
The geometry.in file contains all information concerning the atomic structure of the system. This includes the nuclear
coordinates, which are specified by the keyword atom, followed by cartesian coordinates (in units of Å) and the element
symbol, called “species” in FHI-aims. In addition, comments can be added using a preceding hash symbol. Fig. 2
shows an example geometry.in file for a hydrogen atom.

#The hydrogen atom
atom 0.0 0.0 0.0 H

Figure 2: An example geometry.in file for a hydrogen atom positioned at the origin.

For periodic calculations, lattice vectors can also be given in this file. This will be covered in the next tutorial. In
the present tutorial, however, we will stick to non-periodic systems.

Choosing the method: control.in
This file contains all physical and computational settings for the calculation. Fig. 3 shows a minimal example of a
control.in file, which can be used as a template during the tutorial.

Simplest input settings
###

xc hf
charge 0.0

Iteration limit

sc_iter_limit 300

Species

Figure 3: Simple physical and computational settings for control.in.

3

In this example, the following options are set:

• xc
This keyword sets the method to be used. For example you can choose the option hf, which requests a Hartree-
Fock calculation.

• charge
Set the total charge of the system in units of |e|. For a neutral system, this is zero.

• sc_iter_limit
Determines the limit of self-consistency steps allowed in the calculation.

Additional remark:
Please note that you also can change the convergence criteria of the self-consistent field (s.c.f)
cycle using the keyword sc_accuracy_rho for the electron density. If this keyword is not set,
FHI-aims uses a default that is rather stringent for most production calculations. The value
chosen by the code for a given system can be found in the output file of each run. There are
additional criteria that can be required for s.c.f. convergence. However, checking expensive
quantities such as forces or stresses directly for s.c.f. convergence can be very costly and
should be avoided unless there is a definite need.

In addition to these keywords, the control.in file must contain the definition of the computational parameters for
each species that is specified in geometry.in. The order of the species in the listing is irrelevant. FHI-aims is shipped
with pre-defined settings for all species which govern the key parameters regarding the numerical accuracy. They
include, inter alia, the specification of all real-space integration grids, the accuracy of the Hartree potential and, of
course, the basis set. For all elements, defaults are provided for three di�erent levels of accuracy: light, tight, and
really tight. Additional intermediate settings are provided for several much-used elements. The pre-defined settings
can be found in the directory

$SPECIES_DEFAULTS
and should be copied and pasted into control.in, e.g. via the command

cat $SPECIES_DEFAULTS/really_tight/01_H_default » control.in
which pastes the really_tight settings of the H-atom into the control.in file. Already the tight species_defaults are
rather safe and really tight settings are overconverged for most purposes. In addition the number of basis functions can
be varied, as well as the basis functions themselves. The basis functions associated with a given species are tabulated
at the end of these default settings, as shown in Fig. 4

The idea of keeping the species defaults out in the open is that, even if they are not modified, these are the critical
accuracy parameters which one might look at to ensure numerical convergence. Each line denotes a specific basis
function. They can be read as follows: The first keyword denotes the “type” of the basis function. hydro means that
this is a hydrogen-like basis function. Some basis functions are of the type ionic. They are described in more detail
in the manual. The next two symbols correspond to the first two quantum numbers (principal quantum number n,
orbital quantum number l) of the basis functions, and the final number corresponds to the “e�ective nuclear charge”
for which this basis function is created. hydro 1 s 0.85 corresponds to the exact solution for the 1 s basis function
of a hydrogen atom if it had a nuclear charge of only 0.85.

The basis functions are classified in “tiers” (i.e., levels of importance). Not all basis functions are enabled by
default. Rather, some are commented out using the “ # ” symbol. They can be included in the calculation by
removing the hash symbol from the corresponding lines. Systematically improved calculations can be performed by
enabling additional tiers one after another (however, the computational cost for routinely overconverged calculations
also increases rapidly).

4

###
#
FHI -aims code project
VB , Fritz -Haber Institut , 2007
#
Suggested "safe" defaults for H atom
(to be pasted into control .in file)
#
###

species H
global species definitions

nucleus 1
mass 1.00794

#
l_hartree 8

#
cut_pot 4.0 2.0 1.0
basis_dep_cutoff 0.d0

#
radial_base 24 7.0
radial_multiplier 2
angular_grids specified

division 0.2783 110
division 0.3822 194
division 0.5626 302
division 0.5922 434
division 0.6227 590

division 0.7206 770
outer_grid 770

outer_grid 590
###
#
Definition of " minimal " basis
#
###
valence basis states

valence 1 s 1.
ion occupancy

ion_occ 1 s 0.5
###
#
Suggested additional basis functions . For production calculations ,
uncomment them one after another (the most important basis functions
are listed first).
#
Basis constructed for dimers : 0.5 A, 0.7 A, 1.0 A, 1.5 A, 2.5 A
#
###
"First tier" - improvements : -1014.90 meV to -62.69 meV

hydro 2 s 2.1
hydro 2 p 3.5

" Second tier" - improvements : -12.89 meV to -1.83 meV
hydro 1 s 0.85
hydro 2 p 3.7
hydro 2 s 1.2
hydro 3 d 7
"Third tier" - improvements : -0.25 meV to -0.12 meV
hydro 4 f 11.2
hydro 3 p 4.8
hydro 4 d 9
hydro 3 s 3.2

Figure 4: Tabulated basis functions for hydrogen. The basis functions are classified in “tiers”. In this example only the tier
1 and minimal basis functions are enabled.

5

Free atoms and simple spin-polarized systems: Additions to control.in
Part I of this tutorial will deal with free atoms and very simple diatomic molecules. For a physically correct treatment,
their spin will have to be considered. To do so, modify your control.in file as follows:

Sample input file for the calculation of a H atom
###

xc hf
charge 0.0
spin collinear
default_initial_moment 1

Iteration limit

sc_iter_limit 300

Species

Figure 5: Default physical and computational settings for simple spin-polarized systems in control.in.

These basic keywords should be used as default for part I of this tutorial, unless specified otherwise. However, do
not use these modifications routinely in other calculations if you do not need them – see below for more information:

• spin
This keyword governs the spin treatment. It can be set to none, which requests a spin-restricted calculation,
or to collinear, which requests a spin-unrestricted (polarized) calculation. In a spin-restricted calculation, –

and — spins are assumed to be equal. Only one spin-channel is treated and hence, the number of electrons is
e�ectively halved. This accelerates the calculations significantly, typically a factor 2 or more.
Important: In systems that are safely unpolarized, always use spin none.

• default_initial_moment 1
Sets the initial spin of the atoms. The value 1 requests an initial spin moment of 1, i.e., one more spin-up
electron than there are spin-down electrons. Only necessary for spin collinear calculations.
Warning: Only ever use the default_initial_moment keyword for very simple systems, where all atoms
are expected to behave identically. In more complex systems, where some atoms carry spin and others don’t,
never use default_initial_moment. Instead, modify the geometry.in file and add individual initial_moment
keywords to specific atoms there. Initializing the s.c.f. cycle with an unphysical spin state can greatly slow down
the calculation and can lead to physically incorrect results.

Tip:
In principle, one never needs to use default_initial_moment at all. It is much simpler (and
less error-prone) to place initial_moment keywords after any atom to be spin-initialized in
geometry.in in Figure 6:

#The correctly spin - initialized hydrogen atom
atom 0.0 0.0 0.0 H

initial_moment 1.0

Figure 6: geometry.in file with spin initialization of a single H atom. Each atom can get its very own initial moment by
placing an initial_moment tag in the next line for any atom that might carry a spin.

6

Additional tools and programs
Bash shell:
A short list of the basic bash (command line) commands is given in Appendix II.

All scripts you will need for this tutorial can be found in
$HandsOn/tutorial_2/utilities

Visualization tools:
To visualize structures, you may use jmol. A short jmol tutorial video can be found in $HandsOn/tutorial_2/jmol_tutorial.ogv.
In case you are not familiar with jmol, use any of your favourite softwares viz. VESTA etc.
Plotting and Editing:
Matplotlib and xmgrace can be used to visualise and plot data. Also, you can use Origin, Gnuplot or any software of
your choice that you are already familiar with.

7

Part I: Basic electronic structure with FHI-aims

Problem I: Total energy of free atoms: The hydrogen atom
In this exercise, we aim to convey the basics of FHI-aims using the hydrogen atom. The hydrogen atom is the simplest
non-trivial system possible and the only one for which the exact analytic solution is known. By the end of the first
exercise, we will see how various computational methods compare to each other and to the exact solution. From a
technical perspective, we will learn how to generate input files, read the standard FHI-aims output, and perform basis
set convergence tests.

Getting started - the hydrogen atom

Educational Objectives:

• Become aquainted with running FHI-aims calculations

• Learn how to do systematic basis set convergence

Tasks

1. Generate a simple geometry.in file by hand, which contains only a single hydrogen atom, using the example
shown in Fig. 2. This corresponds to a single hydrogen atom in a hypothetical ideal gas phase. It is located at
the origin of the coordinate system, although its position does not matter here.

2. Generate a simple control.in file by hand, using the example control.in file given in Fig. 5. Systems with
only a single electron can be solved exactly (within the Born-Oppenheimer approximation) using Hartree-Fock.
Finally, append the “really_tight” species data of H to the end of the control.in file, e.g. via the command
cat $SPECIES_DEFAULTS/really_tight/01_H_default >> control.in

3. copy $HandsOn/job.sh to working directory

4. Now, run FHI-aims:
sbatch job.sh

Once the calculation has finished, open the output file. If you find the line “Self-consistency cycle converged.”
near the end, then your calculation is converged. We are now interested in the total energy. Search for the block

| Total energy uncorrected : -0.136053823214315E+02 eV
| Total energy corrected : -0.136053823214315E+02 eV
| Electronic free energy : -0.136053823214315E+02 eV

In this special case, all energies are equal, but this will not be the case if fractionally occupied orbitals were
found! For non-metallic systems, as in this tutorial, always use the Total energy uncorrected value. (You
will learn what the other two values mean in a future lecture.) Compare it with the exact result for the hydrogen
atom (0.5 Hartree ¥ 13.6057eV).

TIP:
In later exercises, to find this value fast and e�ciently, use the command
grep ’Total energy uncorrected’ output

5. Redo the calculation with di�erent basis sets (minimal , tier1, tier2, tier3) by (un)commenting the basis
functions at the end of the control.in file. Calculations with minimal basis set are performed by removing all
basis functions that are listed in the file. Search the output file to find out how many basis functions are actually
used in the calculations. Then, plot the total energy as function of the basis set size. At which tier does total
energy converge?

TIP:
To plot the results, simply create a text file (e.g., results.dat) with two columns, the
number of basis functions and the obtained total energy. This file can be plotted directly
using xmgrace with the command
xmgrace results.dat

8

In principle you can use any plotting software of your choice if you dont́ have xmgrace installed viz. Gnuplot, Origin
etc.

Method performance
To learn about the performance of di�erence exchange-correlation functionals, repeat for di�erent methods. Replace
hf in control.in with

• pw-lda

• pbe

• pbe0

Do all methods converge with basis set size? Do all converge to the same result?

Optional: An optimal basis set
If you browse through the hydrogen basis set, you will note that the hydrogen 1s function is not included. Change
that by adding the line

hydro 1 s 1
at the end of the control.in file. Comment out all other basis functions and run the Hartree-Fock calculation again.
How close does it get to the exact result?

Problem II: Hydrogen molecule (H2): bond length and dipole moment
Hydrogen Molecule (H2)
One of the most influential papers in chemistry for systematic investigation of the performance of DFT was Johnson
et al.[1], in which several properties of a large number of diatomic systems were consistently computed and compared
to experimental values. In the style of this work, we will calculate the binding curve and atomization energy (�Hat)
for hydrogen molecule (H2) with two methods.

Eductational Objectives:

• Find the equilibrium bond distance of a simple diatomic molecule.

Tasks:

1. The first task of this exercise will be to find the equilibrium bond distance of H2 from a series of calculations.
Start by creating a geometry.in.template file which contains two H atoms, as shown in Fig. 7.

#H2 at variable bond distances
atom 0.0 0.0 0.0 H
atom 0.0 0.0 Dist H

Figure 7: The geometry data for a H2 molecule. One H is put on the origin and the other H is located Dist Å away from the
origin along the z-axis.

In this example, One H is put on the origin and the other H is located Dist Å away from the origin along the
z-axis. Hereby, Dist is a placeholder which has to be replaced by the actual distance for every calculation.

2. Create a control.in.template file, and specify a hf calculation for a neutral system. Feel free to copy contents
from control.in file in the first exercise, but remove the really tight species setting for hydrogen and paste the
tight setting for H into the control.template file.

3. Next, run calculations in separate folders for di�erent bond distances (ideally between 0.5Å and 1.2Å with 0.1Å
steps, and a denser step width of 0.02 Å between 0.65 Å and 0.85 Å).

9

For each distance, you should

• create a unique directory

• create the control.in and geometry.in file from templates

• replace the bond distance place holder Dist with the bond distance and

• start FHI-aims.

Run FHI-aims for all bond lengths and plot the total energies vs. the bond length.
Which bond length corresponds to the lowest energy? How does the bond length compare to the experimental
bond length of 0.74Å?

4. To compare with experimental values, we compute the atomization energy (�Hat). In order to calculate �Hat,
we will also need the total energy of the isolated H atom. Use the total energies for the single atom from previous
exercise. Check the result carefully

Calculate the atomization energy (�Hat) of H2 by subtracting the free-atom energies from the predicted total
energy of H2 (i.e. the minimum total energy found when varying bond distances).

�Hat = E
H2
tot

≠ 2E
H

atom
(1)

How does this compare to the experimental value of �Hat = 103.3kcal mol≠1 (4.479 eV)?

Optional: Method Performance.
Repeat the bond length determination using pbe0. How does the optimal bond length change? How much does the
total energy and atomization energy change?

10

Part II: Local structure optimisation

Problem III: H2

This exercise covers how to perform geometry optimizations. Specifically, we will relax the H2 molecule of our previous
exercise starting from an initial guess for the geometry and do avoid the equilibrium bond distance.

Educational Objectives

• Learn how to perform a geometry optimization in FHI-aims

• Visualize the relaxation.

1. Fig. 8 shows a geometry.in file for starting the relaxation calculationPlease use this as the starting point for
your structure relaxation.

#H2 at starting bond distance for relaxation
atom 0.0 0.0 0.0 H
atom 0.0 0.0 0.5 H

Figure 8: This geometry.in file gives a starting point for the molecular H2.

2. Create a control.in file, using the control.in file from the previous exercises as a template. For your xc
functional (i.e. method), specify pw-lda. This time, use spin none Finally, add the keyword relax_geometry
trm 1E-3 to request structural relaxation. Your control.in should look similar to the example shown in fig. 9.

#This is a sample input file for execise 2 - relaxation calculation of H2

###

Method

xc pw -lda

charge 0.0

spin none

Iteration limit

sc_iter_limit 100

Relax Initial Geometry

relax_geometry trm 1E -3

Figure 9: The control.in file used for the structure relaxation of the cation H2.

As in the exercises before, the basis set must be included in the control.in file. Use the “tight” species defaults
for H atoms. FHI-aims control file does not require repeated entries of species defaults.
cat $SPECIES_DEFAULTS/light/01_H_default >> control.in

3. Run FHI-aims.
sbatch job.sh

4. To visualize the results, copy the tool create_relax_movie.py from
$HandsOn/tutorial_2/utilities into the working directory. Apply it to the output and pipe the result to a
new file using the command
python create_relax_movie.py output > H2.xyz
Open the file H2.xyz with a visualizer, e.g. jmol.
jmol H2.xyz
(You may use any viewer of your choice and can see jmol tutorial video $HandsOn/tutorial_2/jmol_tutorial.ogv)

Important:
Realize that the chosen relaxation criteria of relax_geometry trm 1E-3 is rather harsh and
should only be used for high accuracy and finite-di�erence calculations.

11

What does the fully relaxed structure look like?
Do you believe that this could be the actual total energy minimum?
How is the optimized bond length di�erent from the one you have found in the previous problem?

• Check how the final bond length changes with the change of functionals, tiers and relax-
ation conditions.

12

Figure 10: Bond length vs. Total energy plot for a H2 molecule calculated with hf.

Figure 11: Bond length vs. Total energy plot for a H2 molecule calculated with pbe0.

Results

13

Figure 12: Bond length in H2 molecule calculated with pw-lda.

14

Figure 13: Bond length in H2 molecule calculated with pbe0.

15

Appendix
Appendix I: Sample python/bash scripts
Sample script for Exercise 2

Below, you find a sample script in python and bash to calculate a molecule with pre-defined bond distances.

##
This is a simple example how to run a series of distances
Note: To run this script , you must be in a directoy which contains
/ geometry . template file with HF , where the distance between H and F#
is determined by a variable named DIST
#
/ a control . template file which contains
the correct method and basis set specifications .
Example input files are provided in the same directory as this script
##

import os , shutil
Variable defintion :
#This variable should point to your local FHI -aims executable
Variable defintion :
AIMSBIN =’aims.x ’

f=open(’ geometry .in.template ’,’r’) #read geometry template
template =f.read ()
f.close

#Loop over the distances
for Distance in [0.7 , 0.8, 0.85 , 0.87 , 0.89 , 0.9 ,1 0.93 , 0.95 ,\

1.0, 1.1, 1.2, 1.3]:
print Distance
Create directory with the distance as name
if not os.path. exists (str(Distance)): os.mkdir(str(Distance))
copy the control file into the new directoy
shutil .copy(’ control .in.template ’, str(Distance)+’/ control .in ’)
the the geometry template and
replace the term DIST by the current distance and
copy the new file into the directory
out=open(str(Distance)+’/ geometry .in ’,’w’)
template_out = template . replace (’Dist ’,str(Distance))
out.write(template_out)
out.close ()
Change directory
os.chdir(str(Distance));
Run aims and pipe the output into a file named " output "
os. system (AIMSBIN +’ | tee output ’)
Go back to the original directory
os.chdir (’..’)

Figure 14: This is a sample python script for calculating a molecule with di�erent pre-defined bond distances.

16

##
This is a simple example how to run a series of distances
Note: To run this script , you must be in a directoy which contains
/ geometry . template file with HF , where the distance between H and F#
is determined by a variable named DIST
#
/ a control . template file which contains
the correct method and basis set specifications .
Example input files are provided in the same directory as this script
##

#!/ bin/bash -l
ulimit -s unlimited

Variable defintion :
#This variable should point to your local FHI -aims executable
AIMSBIN =aims.x

#Loop over the distances
for Distance in 0.7 0.8 0.85 0.87 0.89 0.91 0.93 0.95 1.0 1.1 1.2 1.3 ;

do
echo $Distance
Create directory with the distance as name
mkdir $Distance ;
copy the control file into the new directoy
cp control .in. template $Distance / control .in
the the geometry template and
replace the term DIST by the current distance and
copy the new file into the directory
sed "s/Dist/ $Distance /g" geometry .in. template > $Distance / geometry .in
Change directory
cd $Distance ;
Run aims and pipe the output into a file named " output "
$AIMSBIN | tee output ;
Go back to the original directory
cd ..

done;

Figure 15: This is a sample bash script for calculating a molecule with di�erent pre-defined bond distances.

17

Sample script for Exercise 10

import os , shutil
Variable defintion :
AIMSBIN =’aims.x’
###
MIXER =[’ linear ’, ’pulay ’]
N_MAX =[3, 5, 8]
PARAM =[0.1 , 0.3, 0.2]

print " ** "
print " EXERCISE �X:"
print " ** "

f=open(’ control .in.template ’,’r’) #read control template
template =f.read ()
f.close

for typ in MIXER:
if not os.path. exists (typ): os.mkdir(typ)
os.chdir (typ)

if typ != ’linear ’ :
for num in N_MAX:

if num == 3:
para=PARAM [0]

elif num == 5 :
para=PARAM [1]

elif num == 8 :
para=PARAM [2]

if not os.path. exists (str(num -para)): os.mkdir(str(num -para))
os. chdir(str(num -para))
shutil .copy (’../../ geometry .in.template ’, ’geometry .in ’)
out=open(’ control .in ’,’w’) # replace the term TYPE in control

template by the current mixer
template_out = template . replace (’TYPE ’,typ)
set paramters
template_out = template_out . replace (’PARA ’,str(para))
template_out = template_out . replace (’NUM ’,str(num))
out.write(template_out)# and copy the new file into the directory
out.close ()
os. system (AIMSBIN +’ | tee output ’) # Run aims and pipe the output

#into a file named " output "
os.chdir (’..’)

else:
shutil .copy (’../ geometry .in.template ’, ’geometry .in ’)
out=open(’ control .in ’,’w’) # replace the term TYPE in control

template by the current mixer
template_out = template . replace (’TYPE ’,typ) # set paramters
template_out = template_out . replace (’ charge_mix_param ’,\

’# charge_mix_param ’)
template_out = template_out . replace (’ n_max_pulay ’,’# n_max_pulay ’)
out.write(template_out)# and copy the new file into the directory
out.close ()
os. system (AIMSBIN +’ | tee output ’) # Run Aims

os.chdir (’..’)

Figure 16: This is a sample python script that tests di�erent settings for the density mixing schemes.

18

Appendix II: Bash

Bash is a Unix shell and command language for the GNU Project and the default shell on Linux and OS X systems.
We will use it to execute most programs and exercises. Below you find a list of the most import commands. It
furthermore o�ers a full programming language (shell script) to automatize tasks e.g. via loops.

Basic control:

TAB - auto completion of file or command
Up/Down - See previous commands
CTRL R - reverse search history
Middle Mouse Button - Paste at prompt position
CTRL L - Clear the terminal
!! - repeat last command

Basic navigation:

ls -a - list all files and folders
ls <folderName> - list files in folder
ls -lh - Detailed list, Human readable
ls -l *.jpg - list jpeg files only
ls -lh <fileName> - Result for file only

cd <folderName> - change directory
cd / - go to root
cd ..- go up one folder, tip: ../../../
pwd - print working directory

Basic file operations:

cat <fileName> - show content of file
head - from the top

-n <\#oflines> <fileName>
tail - from the bottom

-n <\#oflines> <fileName>
mkdir - create new folder
mkdir myStuff ..
mkdir myStuff/pictures/ ..

touch <fileName> - create a file

cp image.jpg newimage.jpg - copy and rename a file
cp image.jpg <folderName>/ - copy to folder
cp image.jpg folder/sameImageNewName.jpg
cp -R stuff otherStuff - copy and rename a folder
cp *.txt stuff/ - copy all of *<file type> to folder

mv file.txt Documents/ - move file to a folder
mv <folderName> <folderName2> - move folder in folder
mv filename.txt filename2.txt - rename file
mv <fileName> stuff/newfileName

if folder name has spaces use “ “
mv <folderName>/ .. - move folder up in hierarchy

rm <fileName> .. - delete file (s)
rm -i <fileName> .. - ask for confirmation
rm -f <fileName> - force deletion of a file
rm -r <foldername>/ - delete folder

Extract, sort and filter data:

grep <someText> <fileName> - search for text in file
-i - Doesn’t consider uppercase words

19

-I - exclude binary files
grep -r <text> <folderName>/ - search for file names

with occurrence of the text

Flow redirection -redirecting results of commands:

’>’ at the end of a command to redirect the result to a file
ex --> ps -ejH > process.txt
’>>’ to redirect the result to the end of a file

Chain commands

’|’ at the end of a command to enter another one
ex --> du | sort -nr | less

20

References
[1] B. G. Johnson, P. M. W. Gill and J. A. Pople, The performance of a family of density functional methods, The

Journal of Chemical Physics 98, 5612 (1993).

[2] R. S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions. II. Overlap Popula-

tions, Bond Orders and Covalent Bond Energies, The Journal of Chemical Physics 23, 1841 (1955).

[3] E. Block, The Chemistry of Garlic and Onions, Scientific American 252, 114 (1985).

21

FHI-aims Tutorial:

Density-Functional Theory and Beyond

Advanced Materials Modelling

Tutorial III: Periodic Systems

Manuscript for Exercise Problems

Prepared by Debalaya Sarker,

Zhong-Kang Han, Sergey V. Levchenko

CEST, Skoltech

Introduction
This tutorial aims to familiarize you with the basic concepts of periodic density-functional theory (DFT)
calculations and with the settings necessary to run FHI-aims. Before we start working on the first
problem, a short overview is provided.

The practice session consists of the following parts:

Part I: Basic properties of solids and convergence tests
Problem I: Generation and visualization of bulk structures
Problem II: Energy convergence tests
Problem III: Unit cell relaxation
Problem IV: Electronic band structure & density of states

Part II: Dealing with a crystal surface in aims
Problem V: Electronic structure of crystal surfaces

You should work through all the problems to learn about the basic concepts of periodic systems. In the
directory $HandsOn/tutorial_3/, you can find all the files necessary for this tutorial. Please copy the
contents of the skel/ folder into your own working directory. Dedicated folders have been prepared in
the skel/ directory for each problem. Please use this directory hierarchy, as a few of the directories
contain helpful files.

Like before, prepare control.in and geometry.in files, copy the submission script $HandsOn/job.sh
to the working directory and starts FHI-aims calculations

If you have di�culty with a particular problem, do not hesitate to ask one of the tutors. In any case, it
is perfectly fine to skip the rest of a problem and move on to the next. This also applies if your calculation
takes significantly longer than the estimated CPU time for the given problem. Any intermediate results
required for later problems are provided in the reference/ folder. If you like, you may also use this
folder to compare to your results.

Take your time to read every task carefully before starting calculations. Each subtask starts with
a short summary (grey box) and gives details and hints afterwards. Also, feel free to consult the
supplementary information presented in the Appendices.

2

Part I: Basic properties of solids and convergence tests
In the first Part of this tutorial, we will work on di�erent structural phases of bulk silicon. The correct
description of bulk silicon’s pressure dependence by Yin and Cohen [1] is one of the early success stories
of computational materials science. In this Part, we show how to calculate basic properties of solids such
as lattice constants, band structures, and density of states.

Please use the basic settings given in Fig. 1 as default for Part I of this tutorial (unless specified
otherwise).

Physical settings
xc pw -lda
spin none
relativistic atomic_zora scalar

k-grid settings (to be adjusted)
k_grid nkx nky nkz

Figure 1: Default physical and computational settings for control.in for Part I. This file can be found in

skel/problem_1/control_part1.in.

The Perdew-Wang LDA (xc pw-lda) exchange-correlation functional will be used for all calculations.
The e�ect of using di�erent xc functionals has been discussed in “Tutorial 2: Basics of Electronic-
Structure Theory”. Silicon is known to be non-magnetic, so no explicit spin treatment is needed. The
“relativistic atomic_zora scalar” setting is not strictly necessary for silicon, since the nuclear
charge of silicon (Z = 14) is still small enough to allow for a non-relativistic treatment. But as the
correction is computationally inexpensive, it does not hurt to use it, either. However, never compare
total energies from di�erent relativistic settings, as they will di�er.

The SCF settings section of control.in has already been discussed in detail in “Tutorial 2: Basics of
Electronic-Structure Theory”. The k_grid setting section will be discussed in this tutorial.

For the species settings, please use the default “light” species settings for Si in:
$SPECIES_DEFAULTS/light/14_Si_default.

Problem I: Generation and visualization of bulk structures
Our first step towards studying periodic systems with FHI-aims is to construct periodic geometries in
the FHI-aims geometry input format (geometry.in) and visualize them. After that, we will learn how
to set basic parameters in control.in for periodic calculations. Finally, we will compare total energies
of di�erent Si bulk geometries.

Setting up and visualizing geometry.in

• Construct geometry.in files for the Si fcc, bcc, and diamond structures. Use the ap-
proximate lattice constants a of 3.8 Å for fcc, 3.1 Å for bcc, and 5.4 Å for the diamond
structure.

• Visualize them (e. g. with Jmol).

• Do not perform any calculations yet.

To set up a periodic structure in FHI-aims, all three lattice vectors as well as the atomic positions
in the unit cell must be specified. The lattice vectors are specified by the keyword lattice_vector.
There are two ways to specify the atomic positions. As in the cluster/non-periodic case, you can specify
absolute Cartesian positions with the keyword atom. Alternatively, you can specify the atomic positions
in the basis of the lattice vectors, the fractional (or commonly, direct) coordinates, with the keyword
atom_frac. The fractional coordinates si are dimensionless and the coe�cients for the linear combination
of the lattice vectors ai. Written out as a formula, this linear combination reads as follows

R = s1 · a1 + s2 · a2 + s3 · a3, (1)

where R is the Cartesian position of the specified atom.
For example, fcc Si with a lattice constant a = 4 Å is defined by

3

Figure 2: Single unit cell (left) and periodic images (right) of diamond Si in Jmol.

lattice_vector 0.0 2.0 2.0
lattice_vector 2.0 0.0 2.0
lattice_vector 2.0 2.0 0.0
atom_frac 0.0 0.0 0.0 Si

A full set of lattice vectors and atomic positions of primitive unit cells (the unit cell with the smallest
volume, containing the bare minimum number of atoms necessary to replicate the system when all
periodic images are included) for fcc, bcc, and diamond can be found in Appendix I. In Fig. 20 in
Appendix I the simple cubic and primitive unit cells of fcc, bcc, and diamond are shown. Atomic
positions are provided in Cartesian coordinates. Please note that the values in geometry.in must be
provided explicitly and not in terms of the formulas presented in Appendix I; specifying a value of
4.0/2.0 instead of 2.0 will cause your calculation to fail.

The simplest way to check the geometry.in file is to visualize the corresponding geometry. This should
always be done before any calculation, to verify that the structure is plausible (and that no atoms are
extra or missing). For periodic structures in FHI-aims, we recommend Jmol, an open-source Java viewer
for chemical structures in 3D. Information on the program and the source code can be obtained from
http://jmol.sourceforge.net. To visualize a structure given in geometry.in with Jmol (Fig. 2),
please type

jmol geometry.in &

To get periodic images, click with the right mouse button inside the Jmol drawing area and choose
“Symmetry” æ “Reload {444 666 1}”.

Setting up control.in and running FHI-aims

• Prepare a control.in file using 3◊3◊3 k-points and the settings given in the in-
troduction of part I (see Fig. 1). These settings can be found in skel/problem_1/
control_part1.in.

• Calculate total energies of each of the di�erent phases as a function of lattice constant
a. For this, consider 7 di�erent values of a in steps 0.1 Å around the lattice constants
given above for each structure.

[Estimated total CPU time: 3 min]

The control.in for periodic calculations looks much the same as for the cluster case, as the underlying
numerics are the same. There is one important di�erence, though: a k-grid for the Brillouin zone
integrations must be specified. For example, to specify a 3◊3◊3 k-grid, the following line must be
included in control.in:

k_grid 3 3 3

The k-grid points are defined in terms of the reciprocal lattice vectors which are generated from the real-
space lattice vectors as defined in geometry.in. The ordering of real-space lattice vectors in geometry.in

4

determines the ordering of reciprocal lattice vectors in the code. For systems with real-space lattice
vectors that are not equivalent by symmetry (such as a surface calculation where one lattice vector is
much longer than other lattice vectors), the ordering will matter. You will see that for a small unit cell
this k-point density is never enough. But we can try to find out what happens. In the next problem,
the k-point settings will be discussed in detail.

In this tutorial, we call FHI-aims with the command similar to the one we used in “Tutorial 2: Basics of
Electronic-Structure Theory”. In order to run the calculation on the 4 available (physical) processorsiIt
is recommended that you modify now the job.sh submission script as Fig 3 to run calculations with the
number of physical processors (here 4).

#!/ bin/sh
SBATCH -p xavier
SBATCH -J test
SBATCH -t 00:05:00
SBATCH -N 1
SBATCH -n 4

module load intel/mkl -11.2.3 mpi/impi -5.0.3
mpirun -np $SLURM_NTASKS $HandsOn /bin/aims.x >& output

Figure 3: Sample submission script. You may alter the wall time # SBATCH -t, number of nodes # SBATCH

-n depending on the job in hand.

Next, in your workstation, use the following command:

sbatch job.sh

Make sure you use MPI, otherwise your calculations will take (roughly) 4 times longer. The estimated
CPU time given with the exercises refers to the calculations with 4 processors. It is good practice to use
a separate directory for every run of FHI-aims in order to preserve the exact input files along with the
output files.

In this exercise, we compare energies of di�erent lattice structures as a function of lattice constant.
Each calculation can be prepared and started by hand, in principle, but we strongly suggest to use
python/bash scripts

Now, extracts the total energies and write them to the file energies.dat, along with the lattice
constants. For the next subtask, it is advantageous to write out the total energy per atom, not per
unit cell, which makes a di�erence for the diamond structure. (In the case of fcc and bcc, each unit cell
contains one atom, so the total energy per atom and the total energy per unit cell are the same quantity.)

Plotting total energies

• Plot the total energy per atom of each structure as a function of the lattice constant
(e.g. with xmgrace).

• What is the most stable bulk phase of Si according to your results?

After running the code, plot your data (given in fcc/energies.dat, bcc/energies.dat, and diamond/
energies.dat) using for example xmgrace by typing:

xmgrace -legend load \
fcc/energies.dat bcc/energies.dat diamond/energies.dat &

All curves should have minima (if not, check the list of lattice parameters) and similar energy ranges (if
not, make sure that you properly printed out the total energy per atom, and not the total energy per
unit cell).

You should see that, with the current computational settings, the diamond Si phase is unfavorable
compared to the other two phases by about 0.1 eV. However, the experimentally most stable phase is
the diamond structure. We will show in the next two problems that the too coarse 3◊3◊3 k-grid is the
reason for this disagreement.

5

Problem II: Energy convergence tests
The results of the last problem were not quite physical. As will be shown later, this is because the
calculations were not converged. Here, we will explicitly check total energy convergence with respect to
the k-grid and to the basis set.

Convergence with k-grid

• Calculate the total energies for ALL the Si phases of Problem I as a function of the
lattice constant for k-grids of 8◊8◊8, 12◊12◊12, and 16◊16◊16. Otherwise, use the
same computational settings (control.in) and the same lattice constants as in Prob-
lem I.

• Prepare a plot with all total energies drawn against lattice constant using xmgrace, as
you did in Problem I. Add the 3◊3◊3 results from Problem I, too.

• Which k-grid should be used to achieve convergence within 10 meV?

[Estimated total CPU time: 6 min]

You should dedicate one directory for every series of these calculations. These calculations should be
done exactly as in Problem I but with the appropriate changes to control.in.

In the metallic fcc and bcc phases, the total energy of the 3◊3◊3 calculation is about 0.3 eV lower than
the most accurate (16◊16◊16) calculation. The larger part of this error is already fixed by the 8◊8◊8
k-grid, which is still o� by about 30 meV. The 12◊12◊12 grid, on the other hand, is converged within
about 5 meV. For the semiconducting diamond Si phase, the total energy of the 3◊3◊3 calculation is
about 0.3 eV too high, but the convergence is already very good for an 8◊8◊8 k-grid.

• In general, metals (like Si fcc & bcc) or small cells require a denser k-grid compared
to semiconductors (Si diamond) or large cells.

In conclusion, we can use a 12◊12◊12 k-grid for fcc and bcc Si as a good compromise of high accuracy
and reasonable computational time. For simplicity, we use the same grid also for diamond Si although
8◊8◊8 would be enough in that case.

Convergence with basis set size

• Calculate the total energies for your phase of Si as a function of the lattice constant
for the minimal and the tier1 basis sets. Use the same lattice constants and computa-
tional settings as in Problem I together with the 12◊12◊12 k-grid.

• Again, prepare a plot with the total energies. Add the results for the minimal+spd ba-
sis set (the default for the “light” species settings) from the k-point convergence test
above.

[Estimated total CPU time: 4 min]

Use your control.in file from the previous problem for the 12◊12◊12 k-point grid. In order to change
the basis size settings, you should have a look into the species-dependent settings within control.in.
There, you will find a line starting with “ # "First tier" - ... ”. Each line after this defines a basis
function which is added to the minimal basis. Right now, there is one additional function for each
valence function (s and p) as well as a d function to allow the atoms to polarize. This is what we
call minimal+spd in the context of this tutorial. In quantum chemistry and in particular the Gaussian
community, this type of basis set is often called “double zeta (’) plus polarization” (DZP).

To run FHI-aims with a minimal basis, simply comment out these three lines by prepending a “#”
character. To run FHI-aims with a full tier1 basis set, uncomment all four lines following the statement
“ # "First tier" - ... ” by removing the initial “#” character.

You can see that the minimal basis gives completely unphysical results; the energetic minimum is
strongly shifted towards larger lattice constants. The minimal basis lacks the flexibility to give reasonable
geometries. On the other hand, the binding curve does not change drastically from minimal+spd to the

6

full tier1 basis set whereas the computational e�ort increases significantly by adding the f functions
from minimal+spd to full tier1, as there are seven such functions (l=-3,-2,...,2,3). You could also check
tier2. In that case, though, it would be worth using better integration grids (tighter) etc. as well.

While the total energy di�erence of about 60 meV between minimal+spd and tier1 is still larger than
what we were aiming for in the case of the k-grid, we can make use of the fact that the total energy is
variational so that a large part of the basis set error actually cancels nicely in energy di�erences between
bounded structures.

Bonus: E�ect of Gaussian broadening of the Kohn-Sham occupation numbers

Bonus: Please skip this subtask if you run out of time or you are inexperienced in modifying
scripts.

• Calculate the total energies for fcc Si as a function of the lattice constant for a Gaus-
sian broadening of ‡ = 0.1 eV. Use the same lattice constants and computational set-
tings as before with a 12◊12◊12 k-grid and the minimal+spd basis.

• Prepare a plot with the corrected, uncorrected total energies, and the electronic “free
energies” for a broadening of ‡ = 0.1 eV and the default value of ‡ = 0.01 eV from the
previous calculations.

[Estimated total CPU time: 2 min]

Use your control.in file from the previous problem, with a 12◊12◊12 k-point grid and the minimal+spd
basis. You can explicitly set the Gaussian broadening to ‡ = 0.1 eV by specifying

occupation_type gaussian 0.1

in control.in.
FHI-aims always outputs three di�erent energies. While these energies are all the same for sys-

tems with a gap, they di�er for metallic systems with finite Gaussian broadening. The “Total energy
uncorrected” gives the value of the Kohn-Sham energy functional for the final self-consistent electronic
structure. However, due to the Gaussian broadening, the self-consistency procedure does not minimize
this total energy but a “free energy” specified right of “Electronic free energy”. From these two num-
bers, FHI-aims back-extrapolates to the total energy without broadening and writes the resulting number
of “Total energy corrected”. For true metals, it is generally best to make use of the correction. For
finite systems and in particular for isolated atoms, however, the back-extrapolation is unphysical and
should not be used.

For diamond Si, the Gaussian broadening makes no di�erence at all as long as the broadening ‡ is
small compared to the band gap. The first thing to notice for the metallic phases is that all of these
numbers agree with each other within about 2 meV. For the default broadening of ‡ = 0.01 eV, the
energies even agree within 0.1 meV. It can be shown using the variational principle that the total energy
always increases and the electronic “free energy” always decreases for finite broadening.

For the following calculations, we will use the default value of ‡ = 0.01 eV because there is
no benefit in convergence by increasing this parameter for the studied phases of Si. We will stick to the
corrected total energy for the periodic systems in this part of the tutorial as it is the most accurate value
for metals and makes no di�erence for semiconductors.

Problem III: Unit cell relaxation
You have seen in “Tutorial 2: Basics of Electronic-Structure Theory” how to optimize the positions of
atoms in cluster systems. To obtain optimized periodic structures, both the atomic positions and the
lattice vectors must be optimized. This will be the topic of this problem.

• Fully relax (both atomic coordinates and lattice vectors) a distorted bcc Si structure
(see below) with the computational settings you have used before for the Si crystals.

• Analyze the resulting structure (lengths of lattices vectors, angles between them, and
atomic positions) and compare it to the of diamond Si obtained from experiments.

[Estimated total CPU time: 10 min]

7

The basic idea is to perform a structure relaxation from bcc to diamond Si. When performing a local
structure optimization, we try not to go uphill in the energy landscape or cross energy barriers. Thus,
there should be a path from the starting structure to the desired local minimum with very few barriers
in between. However, this means that we have no assurance that we have found the global minimum,
as this may lie over a notable energy barrier from our starting geometry. In order to cross such energy
barriers, one can do, for example, variable cell-shape molecular dynamics, but this is out of the scope of
this tutorial.

Since we desire a diamond structure, we must start with at least 2 atoms, as it is crucial that the
starting unit cell be compatible with the primitive cell (i.e. contain integer multiples of the number
of atoms in the primitive cell). Hence, our starting unit cell is a cubic bcc structure consisting of 2
atoms. Of course, we cannot start with the ideal cubic bcc structure because we will be stuck in the
local minimum for this highly-symmetric structure. Even if we distort the starting geometry significantly
(atomic positions & lattice vectors), we can easily end up in an unwanted local minimum. Therefore,
we will provide a suitable starting geometry, but feel free to try other initial geometries when you are
finished with the given one. You can find this geometry in the directory skel/problem_4/:

lattice_vector 3.1 0.4 0.4
lattice_vector 0.45 3.1 0.4
lattice_vector 0.45 0.45 3.1
atom_frac 0.0 0.0 0.0 Si
atom_frac 0.3 0.3 0.3 Si

To perform a full optimization of the crystal structure, add three lines to your control.in from the
previous problem (k-grid 12◊12◊12, minimal+spd basis set). The line

relax_geometry trm 1E-2

requests a structure relaxation for atoms until residual forces on the atoms smaller than 10≠2 eV/Å have
been achieved, and the line

relax_unit_cell full

enables full optimization of the lattice vectors (lattice vector lengths and the angles between them).
The structure optimization with the provided starting geometry should take 12 relaxation steps, each

relaxation step containing an SCF cycle for the geometry predicted for that step. If you take a closer
look into the FHI-aims output, you will see that not only are the atomic forces calculated but also a
quantity called the “stress tensor”. In essence, the stress tensor is a measure of the forces acting on the
unit cell itself. The final relaxed geometry will be written to geometry.in.next_step.

You can visualize the geometries along the relaxation path if you run the script $AIMSUTILS/create_
geometry_zip.pl (one of the utilities distributed with FHI-aims) and specify the main FHI-aims output
file for your relaxation as an argument for this script. Unzip the resulting file geometries.zip if you want
to see the individual geometries, or use Jmol and the files generated by $AIMSUTILS/create_geometry_
zip.pl to watch a short movie of the relaxation by typing the command “jmol -s geometries.spt”.

The resulting geometry is a primitive diamond structure. The angles between the lattice vectors are
about 60¶, and the length of the lattice vectors matches approximately the result from the Murnaghan
fit in the previous problem. The vector connecting the two atoms is (0.25, 0.25, 0.25) in fractional coordi-
nates, as is expected for the diamond structure. Increasing the basis set size also improves the resulting
geometry. Ideally, one should start a relaxation calculation with FHI-aims using “light” settings. Once
the light relaxation has converged, the resulting geometry (e.g. from the file geometry.in.next_step) is
used as an input for a calculation with “tighter” settings. This saves a significant amount of time, as the
relaxation with (relatively) inexpensive “light” settings will draw the system into the neighborhood of
the local minimum, allowing the tighter relaxation to focus on “finishing the job” of detailed convergence
of the geometry.

Problem IV: Electronic band structure & density of states
The electronic band structure describes energy levels of electrons inside a solid. It gives information about
ranges of energy that electrons can occupy (the bands) and the ranges of energies where no electrons
may be found (the band gaps). Many properties of a solid can be deduced from its band structure, e.g.,
if it is a metal, semiconductor, or insulator.

8

• Calculate the electronic structure of diamond Si using the equilibrium geometry found
in Problem III.

• Calculate the band structure along the high symmetry lines
L æ � æ X æ W æ K.

• Calculate the density of states (DOS) using an energy range of ≠18 eV to 0 eV, Gaus-
sian broadening of 0.1 eV, a k-grid of 12◊12◊12, and dos_kgrid_factors of 5 for each
k-grid direction.

[Estimated total CPU time: 3 min]

Use your control.in and geometry.in for the equilibrium lattice parameter for diamond Si from
Problem III. To calculate the band structure, the high symmetry k-points in reciprocal space must be
supplied to FHI-aims. An example excerpt from control.in corresponding to the first part of the
suggested path, with 21 points per path1, is:

diamond band structure:
output band 0.5 0.5 0.5 0.0 0.0 0.0 21 L Gamma
output band 0.0 0.0 0.0 0.0 0.5 0.5 21 Gamma X
output band ...

In each line, the first three numbers are the coordinates of the starting point in units of the reciprocal
lattice vectors. The next three numbers specify the end point. The band structure is then calculated
along the path connecting these two points.

The last two entries are not mandatory for the calculation inside FHI-aims, but they provide the label
of the specified k-points for the plotting script which you are going to use after the calculation. Please
refer to Appendix II for the location of the other high symmetry k-points in the Brillouin zone for the
materials in this tutorial.

Despite the ubiquity of band structure calculations in condensed matter physics and materials science,
a systematic list of high-symmetry k-paths for all possible Brillouin zones (i.e. all possible materials) was
proposed only recently in 2010 by Curtarolo and Setyawan in Ref. [5] for usage in the AFLOW materials
database (website http://aflowlib.org). For comparison, the original Bloch theorem underlying the
band structure formalism was proposed in 1928.

The density of states (DOS)

The density of states is one of the basic concepts in solid state physics. The DOS around the Fermi level
is of particular interest as it is one of the fundamental quantities for a material, specifying whether a
material is conducting, semiconducting, or insulating. Many material properties depend on the DOS,
notably the electrical and thermal conductivity.

The number of states n within a given energy interval (‘0 ≠ �‘) < ‘ < (‘0 + �‘) per unit volume Vcell
is given by

n =
⁄ ‘0+�‘

‘0≠�‘
d‘ g(‘) (2)

where g(‘) is the density of states (DOS). In a free atom or an isolated molecule, the DOS consists of a
series of discrete energy levels (” peaks) and can be written as

g(‘) =
ÿ

i

”(‘i ≠ ‘). (3)

In a periodic system, the single particle energies become k dependent and the DOS continuous. The
number of states per energy is averaged over k

g(‘) = 1
VBZ

ÿ

i

⁄

BZ
d3k ”(‘i,k ≠ ‘). (4)

In order to calculate the density of states numerically, we have to replace the integral over the Brillouin
zone (BZ) in Eq. (4) by a sum over k-points. In the case of infinite k-points, this replacement is exact.

1 We choose 21 points per path, instead of 20, as the endpoints are included in the number of k-points. This value breaks
the k-path into 20 evenly spaced intervals.

9

However, to compensate the deficiency of a finite grid, we broaden the ”(‘k,i ≠ ‘) distribution by a
Gaussian function with a broadening factor ‡,

g(‘) = 1Ô
2fi‡

1
nk

ÿ

i

ÿ

k

exp
C

≠1
2

3
‘ ≠ ‘k,i

‡

42D
. (5)

To output the DOS in FHI-aims, the following lines are added to control.in:

output dos -18. 0. 200 0.1

The first two values define the energy window where the DOS should be calculated: the first value
is the lower energy bound and the second value is the upper energy bound. The third value is an
integer specifying how many points to include in the energy window, and the last value is the Gaussian
broadening ‡ used in Equation 5. All energies (both bounds and broadening) are given in eV.

Small changes in the shape of a peak in the DOS will negligibly a�ect the total energy. Therefore,
a rather coarse k-grid (defined by the keyword k_grid) in combination with rather broad choices of
‡ (given by “occupation_type gaussian”) can be used for the SCF cycle. However, to resolve fine
features in the DOS, a denser k-grid to include more terms in the the sum over k-points in Eq. (5)
is necessary. After self-consistency is reached, the DOS can be computed using an interpolated k-grid
which is made denser by factors n1, n2, n3, respectively. The factors n1 to n3 are given in control.in
with the keyword:

dos_kgrid_factors 5 5 5

The density of states is calculated on a denser grid after the SCF cycle. The dimensions of the new
k-point grid are k1 ◊ n1, k2 ◊ n2, k3 ◊ n3, where ki are dimensions of the old k-point grid.

Note that two DOS’s will be output into separate files: KS_DOS_total_raw.dat, where the zero of
energy has not been altered, and KS_DOS_total.dat, where the zero of energy has been shifted to the
computed Fermi level.

In order to visualize the band structure, some post-processing is needed after the FHI-aims run.
This may be done by the script aimsplot.py (provided in skel/problem_5/) as long as the output,
geometry.in, and control.in files are in the same directory. Simply run “ python aimsplot.py ”
without any arguments in this directory. NOTE: perform this task on your on laptop/computer
as the server does not have all the required python modules.

Alternatively, copy the perl script aims_band_plotting.pl from path
$HandsOn/tutorial_3/skel/problem_5/ to your working directory. Run perl aims_band_plotting.pl
Then, plot the band_structure.dat file with xmgrace or other plotting software.

You see a band structure with an indirect band gap of about 0.5 eV. Please note that the energy zero is
at the Fermi energy calculated by the code (which for an insulating system may lie anywhere within the
band gap) and not at the valence band maximum, i.e. the highest occupied energy level for an insulating
material The resulting LDA band gap is much smaller than the experimental band gap of silicon (1.17 eV
[2]). This disagreement is commonly called the “band gap problem” of (semi-)local functions.

10

Part II: Dealing with a crystal surface in aims

Figure 4: The hydrogen saturated ideal 2◊1 Si(001) surface. The cyan (light) atoms correspond to the bulk

Si atoms, the blue (dark) atoms are the surface Si atoms. The white atoms on the bottom layer are

hydrogen atoms.

In the second part of this tutorial, we demonstrate standard techniques used to describe surfaces. We will
model the clean Si(001) surface, which is one of the most technologically relevant surfaces. The surface
reconstruction at low temperatures (driven by dangling silicon bonds at the surface) was unclear for
many years. After much debate in the literature arising from di�ering models used to describe di�erent
feature observed in experimental (LEED, STM) and theoretical approaches, it has been shown by direct
evidence in STM by Wolkow [6] that the main surface feature at low temperatures is an asymmetric Si
dimer in a 2◊1 reconstructed surface unit cell.

Please use the settings given in Fig. 5 of Part II of this tutorial together with the “light” species
defaults for silicon. Most of these settings were also used in Part I of this tutorial, thus you can take
your control.in from Part I, making sure to adjust k-grid settings. Saturating the dangling Si bonds on
the bottom layer of the slab will require the addition of hydrogen to the system, so we additionally need
to add the “light” species defaults for hydrogen, which you can find in $SPECIES_DEFAULTS/light/01_
H_default, to our control.in file. As may be observed in Fig. 4, each silicon atom is to be saturated
by two hydrogen atoms.

Physical settings
xc pw -lda
spin none
relativistic atomic_zora scalar

k-grid settings
k_grid 12 24 1

Figure 5: Physical and computational settings for control.in for part II. This file can be found in skel/
problem_6/control_part2.in.

Problem V: Electronic structure of crystal surfaces
The geometry of four layers of Si(001)-(1◊1) in diamond structure is given in Appendix I. Please note
that by convention the surface is rotated with respect to the bulk structure by 45° around the z axis.

11

Please use the optimized lattice constant for diamond Si obtained in Part I.
A slab has two surfaces (by definition), a top and a bottom surface (see Fig. 4). However, in most

cases the system of physical interest is essentially an isolated surface, that is, there are enough “bulk”
layers between the two surfaces of the slab that they are essentially isolated from one another and are
independent experimentally. Here we are interested in the electronic properties of the top surface and
would like to minimize the impact of the bottom surface on our calculation. To prevent physical states
on the bottom surface (arising from the dangling Si bonds) from appearing in the fundamental gap,
the bottom silicon surface is saturated with hydrogen atoms in such a way as to mimic the bonding
characteristics of bulk silicon. Each silicon atom in the bottom surface needs two hydrogen atoms placed
at a distance of 1.5 Å in the direction where the next set of silicon atoms would have been in the bulk
geometry. One can argue that the atomic environment of the hydrogen-saturated silicon atoms will then
mimic the atomic environment of bulk silicon.

For your convenience the geometry.in file for the ideal hydrogen-saturated four layer slab is provided
in:
$HandsOn/tutorial_3/skel/problem_6/01_ideal_2◊1_4_layers

One will need a su�cient amount of vacuum between surfaces so that the surfaces do not interact
through the vacuum. In many DFT codes (especially codes implementing plane-wave basis sets), you
would need to run several calculations with di�erent vacuum thicknesses to find the smallest value which
gives physical results. This is because, for many DFT codes, increasing the size of the computational cell
substantially increases the basis set size and thus the runtime of a calculation, even if no additional atoms
are added to the system. However, in codes implementing localized basis functions (such as FHI-aims),
there is negligible computational cost in adding additional vacuum to the system2, so you may easily
use an relatively large vacuum thickness of Lvac = 100 Å or more from the onset without a noticeable
performance impact.

Band structure and DOS calculation

• Prepare a control.in according to the specified settings.

• Calculate the density of states (DOS) and the surface band structures for 4 layer slab
along �̄ æ J̄ æ K̄ (see Appendix II).

[Estimated total CPU time: 3+13 min]

There are two important issues to note for the optimal k-grid for this system. First, there should be
no interaction between di�erent periodic images of the slab in z direction. Therefore, only one k-point is
needed on that axis. (If you did need more than one k-point along that axis to yield converged results,
this would imply that periodic images in that direction were interacting.) Second, the lattice vector in
x direction is twice as large as the lattice vector in y direction. As this gives a shorter periodicity in ky

direction, the number of k-points in the first direction can be half of that in the second direction. We
use a well converged k-grid of 12 ◊ 24 ◊ 1 (see Fig. 6).

Similar to Part I, for calculating the band structure and DOS, add the following lines in the control.in
file:

Si 2x1 surface band structure:
output band 0.0 0.0 0.0 0.5 0.0 0.0 21 Gamma J
output band 0.5 0.0 0.0 0.5 0.5 0.0 21 J K

and for the DOS

output dos -18. 0. 200 0.1
dos_kgrid_factors 5 5 1

To visualize the band structure, use the script aimsplot.py Simply run the script in the directory
that contains the input and output files of FHI-aims.

In order to perform structure relaxation such that the residual forces on atoms are smaller than
10≠2 eV/Å, add the following line to control.in:

relax_geometry trm 1E-2

2 In fact, this is one of the main strengths of localized basis functions.

12

4 6 8 10 12 14 16 18
k grid

10
-4

10
-3

10
-2

|E
to

t
−
 E

to
t(k

=
3
2
)|
 in

 e
V

2×1 Si(001) surface (4 layers)
light settings, relativistic, LDA

Figure 6: Convergence test for the k-grid of a 4 layer 2◊1 Si(001) surface.

During a structure optimization, commonly only the surface-like parts of the structure are allowed
to relax, and the bulk-like parts are kept fixed. This is done by the keyword constrain_relaxation,
which fixes the position of the previously specified atom in geometry.in. In the FHI-aims manual, you
may find di�erent options, but for constraining all coordinates of an atom, use the flag “.true.”. In the
geometry.in file, please write the following line right under the atom which should be kept fixed:

constrain_relaxation .true.

An example excerpt from geometry.in reads like this:

atom -1.2063524529754976 0.0000000000000000 -0.8530200000000001 H
constrain_relaxation .true.

atom 1.2063524529754976 0.0000000000000000 -0.8530200000000001 H
constrain_relaxation .true.

atom ...

For the sake of time, here constrain all atoms except the top layer (i.e. top two Si atoms). For publication-
quality calculations, more surface layers should be relaxed.

• Perform k-point convergence, basis set convergence for surface.

[Estimated total CPU time: 3+13 min]

13

Figure 7: Bond length vs Total energy in bcc Si calculated with pw-lda.

Figure 8: Bond length vs Total energy in fcc Si calculated with pw-lda.

Results

14

Figure 9: Bond length vs Total energy in diamond Si calculated with pw-lda.

15

Figure 10: Bond length vs Total energy in bcc Si calculated with pw-lda for k-point convergence test.

Figure 11: Bond length vs Total energy in fcc Si calculated with pw-lda for k-point convergence test.

Figure 12: Bond length vs Total energy in diamond Si calculated with pw-lda for k-point convergence test.

16

Figure 13: Bond length vs Total energy in bcc Si calculated with pw-lda for basis set convergence test with

k-grids of 12◊12◊12..

Figure 14: Bond length vs Total energy in fcc Si calculated with pw-lda for basis set convergence test with

k-grids of 12◊12◊12..

Figure 15: Bond length vs Total energy in diamond Si calculated with pw-lda for basis set convergence test

with k-grids of 12◊12◊12.

17

Figure 16: Band structure of diamond Si calculated with pw-lda with k-grids of 12◊12◊12.

Figure 17: Density of states of diamond Si calculated with pw-lda with k-grids of 12◊12◊12.

18

Figure 18: Band structure of 2◊1 Si(001) surface (4 layers) calculated with pw-lda with k-grids of 12◊24◊1.

Figure 19: Density of states of 2◊1 Si(001) surface (4 layers) calculated with pw-lda with k-grids of 12◊24◊1.

19

Appendix I: Structure information

Figure 20: Cubic (black) and primitive (grey) unit cell for bcc, fcc and diamond Si (from left to right).

crystal structures atomic coordinates lattice vectors

fcc 0 0 0
0 a/2 a/2

a/2 0 a/2
a/2 a/2 0

diamond 0 0 0
a/4 a/4 a/4

0 a/2 a/2
a/2 0 a/2
a/2 a/2 0

bcc 0 0 0
≠a/2 a/2 a/2
a/2 ≠a/2 a/2
a/2 a/2 ≠a/2

zincblende with
atom species A and B

A 0 0 0
B a/4 a/4 a/4

0 a/2 a/2
a/2 0 a/2
a/2 a/2 0

Table 1: Solids: Atomic coordinates and lattice vectors for di�erent crystal structures.

diamond(001)
atomic coordinates lattice vectors

0 0 0
a/2

Ô
2 0 a/4

a/2
Ô

2 a/2
Ô

2 a/2
0 a/2

Ô
2 3a/4

a/
Ô

2 0 0
0 a/

Ô
2 0

0 0 L

Table 2: Surfaces: Atomic coordinates of an ideal diamond(001) surface. Note: a is the bulk lattice constant

and L is the total slab thickness (L = a + Lvac with the vacuum size Lvac).

20

Appendix II: High symmetry k-points

fcc x1 x2 x3

L 0.5 0.5 0.5
� 0 0 0
X 0 0.5 0.5
W 0.25 0.5 0.75
K 0.375 0.375 0.75

fcc(001) x1 x2 x3

�̄ 0.0 0.0 0.0
J̄ 0.5 0.0 0.0
K̄ 0.5 0.5 0.0

Table 3: High symmetry points for fcc/diamond bulk and (001) surface structures given in units of the three

reciprocal lattice vectors (k = x1b1 + x2b2 + x3b3). In the case of fcc/diamond bulk, the reciprocal

lattice vectors form a bcc structure and the corresponding lattice vectors can be found in Tab. 1.

Figure 21: Brillouin zone and high symmetry points for fcc/diamond structure. The three coordinate axes (kx,

ky, and kz) form a Cartesian coordinate system – not to be confused with the reciprocal lattice

vectors of the fcc/diamond structure.

21

Appendix III: Python scripts
1 #!/ usr/bin/ python
2 import os
3 import shutil
4 import numpy as np
5
6 # ---
7 # ------------- Change script here ------------------------------
8 # ---
9

10 # Enter your calculated value for the minimal lattice constant
11 aMin = 5.1
12 # Enter your calculated value for the maximal lattice constant
13 aMax = 5.7
14 # Enter a value for the stepwidth
15 step = 0.1
16 # Number of calculations
17 n = int(np.rint ((aMax - aMin)/ step)) + 1
18
19 vector = np.zeros ([3 ,3])
20 # Lattice vector in units of the lattice constant
21 vector [0] = [0.0 ,0.5 ,0.5]
22 vector [1] = [0.5 ,0.0 ,0.5]
23 vector [2] = [0.5 ,0.5 ,0.0]
24
25 # Number of basis atoms
26 atom_no = 2
27
28 atoms = np.zeros ([atom_no ,3])
29
30 # Basis atoms in fractional coordinates
31 atoms [0] = [0.0 ,0.0 ,0.0]
32 atoms [1] = [0.25 ,0.25 ,0.25]
33
34 # ---
35 # -------------End change script here --------------------------
36 # ---
37
38 for i in range (n):
39 aLat = round ((aMin + step * i) ,1)
40 print(" Processing lattice constant %10.6f AA." % aLat)
41 # Create directory
42 dirname = str(aLat)
43 if not os.path. exists (dirname):
44 os. makedirs (dirname)
45 # Change to directory
46 os. chdir (dirname)
47 lattice_vector = vector * aLat
48 # Write geometry .in
49 filename = " geometry .in"
50 f = open(filename ,’w’)
51 # The lattice
52 for lat in lattice_vector :
53 f.write(" lattice_vector {:10.6 f} {:10.6 f} {:10.6 f}\n". format (lat [0] , lat [1] , lat [2]))
54 # The atoms
55 for a in atoms:
56 f.write(" atom_frac {:10.6 f} {:10.6 f} {:10.6 f} Si\n". format (a[0] ,a[1],a[2]))
57 # Close file
58 f.close ()
59
60 # Copy the control file
61 shutil . copyfile ("../ control .in"," control .in")
62
63 # Run FHI -aims on 4 processes
64 #os. system (" mpirun -n 4 aims.x > aims.out ")
65
66 # Change back to former directory
67 os. chdir ("..")

Figure 22: Example python script for running calculations for several lattice constants used in Part I (skel/
problem_1/02_3x3x2/diamond/run_diamond.py).

22

1 #!/ usr/bin/ python
2 import os
3 import numpy as np
4
5 # Minimal lattice constant in A (from run script)
6 aMin = 5.1
7 # Maximal lattice constant in A (from run script)
8 aMax = 5.7
9 # Sampling density in A (from run script)

10 step = 0.1
11 # Number of basis atoms
12 atom_no = 2
13
14 # Number of calculations
15 n = int(np.rint ((aMax - aMin)/ step)) + 1
16
17 data = open(" energies .dat",’w’)
18 data. write("#%22s %20s\n" % (" lattice constant (AA)"," energy (eV/atom)"))
19
20 for i in range(n):
21 aLat = round ((aMin + step * i),1)
22 print (" Postprocessing lattice constant %10.6f AA." % aLat)
23 dirname = str(aLat)
24 filename = dirname + "/" + "aims.out"
25 # Check if calculation was running
26 if (not os.path. isfile (filename)):
27 print("%s was not processed ." % filename)
28 else:
29 # Check for convergence
30 f = open(filename ,’r’)
31 converged = False
32 for line in f:
33 if "Have a nice day" in line:
34 converged = True
35 if "Self - consistency cycle converged ." in line:
36 converged = True
37 f. close ()
38
39 if (not converged):
40 print ("%s is not converged ." % filename)
41 else:
42 # Grep for total energy
43 f = open(filename ,’r’)
44 for line in f:
45 if " Total energy corr" in line:
46 linesplit = line.split ()
47 energy = float (linesplit [5])/ float (atom_no)
48 data.write(" %16.6f %23.6f\n" % (aLat , energy))
49 f.close ()
50 data. close ()

Figure 23: Example python script to retrieve total energies from FHI-aims output files used in Part I (skel/
problem_1/02_3x3x2/diamond/postprocess.py).

23

1 #!/ usr/bin/ python
2
3 import sys
4 from math import sqrt
5
6 def output_lattice_vector (x, y, z):
7 print (" lattice_vector %.16f %.16f %.16f" % (x, y, z))
8 def output_atom (x, y, z, name):
9 print ("atom %.16f %.16f %.16f %s" % (x, y, z, name))

10 def output_constrained_atom (x, y, z, name):
11 print ("atom %.16f %.16f %.16f %s" % (x, y, z, name))
12 print (" constrain_relaxation .true.")
13
14 A = 5.416 # Lattice constant
15 L_vac = 30. # Vacuum
16 A_1x1 = A/sqrt (2.) # 1x1 surface periodicity
17 n_layer = 4 # Number of layers in z- direction
18 Z = A/4. # Layer separation in z- direction
19 C = 0.5 * A_1x1 # Row separation in x- and y- direction
20
21 # H- saturation is put at this fraction of where the next
22 # Si atom would have been.
23 frac_H = 0.63
24
25 # (2x1) reconstructed lattice :
26 output_lattice_vector (2* A_1x1 , 0., 0.)
27 output_lattice_vector (0., A_1x1 , 0.)
28 output_lattice_vector (0., 0., n_layer *Z+L_vac)
29 print
30
31 # Hydrogen saturation
32 # The next Si would have been at (+/-C, 0., -Z).
33 output_atom (-frac_H *C, 0., -frac_H *Z, "H")
34 output_atom (+ frac_H *C, 0., -frac_H *Z, "H")
35 # The next Si would have been at (2*C+/-C, 0., -Z).
36 output_atom (2*C- frac_H *C, 0., -frac_H *Z, "H")
37 output_atom (2*C+ frac_H *C, 0., -frac_H *Z, "H")
38 # Bottom Si layer
39 output_atom (0*C, 0., 0*Z, "Si")
40 output_atom (2*C, 0., 0*Z, "Si")
41 # Other Si layers
42 output_atom (0*C, C, 1*Z, "Si")
43 output_atom (2*C, C, 1*Z, "Si")
44 output_atom (1*C, C, 2*Z, "Si")
45 output_atom (3*C, C, 2*Z, "Si")
46 output_atom (1*C, 0., 3*Z, "Si")
47 output_atom (3*C, 0., 3*Z, "Si")

Figure 24: The python script used in Part III (skel/problem_6/01_ideal_2x1_4_layers/write-geom.py). The

script creates a geometry output (which can be redirected to a file) for the ideal hydrogen saturated

2◊1 Si(001) surface with 4 layers.

24

Acknowledgments
We would like to thank all the aims developers and tutors of aims workshops.

References
[1] M. T. Yin and M. L. Cohen, Microscopic Theory of the Phase Transformation and Lattice Dynamics

of Si, Phys. Rev. Lett. 45, 1004 (1980).

[2] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons Inc, 1986), 6th edition.

[3] F. D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. 30,
244 (1944).

[4] F. Birch, Finite Elastic Strain of Cubic Crystals, Phys. Rev. 71, 809 (1947).

[5] W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges
and tools, Comput. Materials Science 49, 299 (2010).

[6] R. A. Wolkow, Direct observation of an increase in buckled dimers on Si(001) at low temperature,
Phys. Rev. Lett. 68, 2636 (1992).

[7] W. P. Huhn and V. Blum, One-hundred-three compound band-structure benchmark of post-self-
consistent spin-orbit coupling treatments in density functional theory, Phys. Rev. Materials 1, 033803
(2017).

25

