
Advanced Materials Modelling

ab-initio molecular dynamics with

FHI-aims

Skoltech, May 12, 2020

Tutorial III: Ab initio Molecular Dynamics

Manuscript for Exercise Problems

Prepared by Debalaya Sarker

with help of: Zhong-Kang Han and and Sergey V. Levchenko

Introduction

With this tutorial, we aim at introducing you to state-of-the-art techniques for sampling
the potential energy surface of a system at constant energy (microcanonical ensemble)
and at constant temperature (canonical ensemble). The technique we adopt is molecular
dynamics (MD), that can be thought as old as modern physics itself, since we will prop-
agate in time a system of particles, given initial positions and momenta, by numerically
integrate Newton’s equations of motion for the system.
Indeed the original formulation of Newton’s second law is [1]: “Lex II: Mutationem motus
proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa
imprimitur.”, in modern English, “Law II: The change of momentum of a body is propor-
tional to the impulse impressed on the body, and happens along the straight line on which
that impulse is impressed.” In symbols:

⁄

�t
F dt = �p (1)

Where the vector F is the force acting on a body, p is its momentum, �t is the time along
which the force is applied. The whole l.h.s. expression is called impulse.
This technique allows one to sample the potential energy surface of a system at constant
energy (micro-canonical ensemble) and at constant temperature (canonical ensemble). As
long as the ergodic hypothesis is valid, we will be, in principle, able to relate the time av-
eraged parameters (or properties), to the thermodynamic averages over the corresponding
statistical ensemble.
The kind of MD we are interested in is Born-Oppenheimer MD, where the degrees of
freedom of the nuclei are considered to be decoupled from the degrees of freedom of the
electrons (Born-Oppenheimer approximation). On top of this approximation, usually one
treats the nuclei as classical particles. Therefore, the forces between them are evaluated
by solving the (ground-state) electronic structure problem for a given number of electrons
and for a given position of the nuclei. In this tutorial, the electronic structure problem
is solved via Density Functional Theory (DFT) within the FHI-aims code and the nuclei
problem is managed by the i-PI code. i-PI works through a client-server paradigm, where
the ab initio code, in this case FHI-aims, is the client that provides the calculation of
interatomic forces, and i-PI is the server that provides the evolution of the equations of
motion that sample the desired ensemble.
The tutorial contains two exercises; all of them adopts as guinea-pig the gas-phase (iso-
lated) H5O+

2 , which some of you may recognize as the Zundel (cat)ion. This system is one
of the (protonated) water clusters that are thought to be the “building blocks” of liquid
water. [2]

The first, and quick, introductory exercise presents the machinery we will use through
the tutorial. In particular, you will learn how to setup the i-PI and FHI-aims inputs.

The second exercise poses the problem of choosing the right settings for obtaining a stable
and reliable molecular dynamics trajectory. In particular we will investigate the e�ect of
the self-consistent cycle and force convergence thresholds.

The third exercise deals with the choice of a thermostat for simulating the canonical
ensemble, i.e., the contact between your system of interest and a thermal reservoir. In this

2

tutorial we will focus on the so-called stochastic thermostats. Other implementations, for
example based on extended Lagrangians exist as well, and will be briefly explained in the
exercise.

All the useful files and scripts for this tutorial (together with solutions) are located
in:

$HandsOn/tutorial_MD
In this tutorial we use python 2.7; please type in your working directory:.

source $py27/activate

This will switch to this version.

3

Molecular Dynamics: a client/server approach

Exercise 1: Getting started

In this exercise we are going to familiarize ourselves with the syntax of i-PI input files.
As mentioned previously, the i-PI program works through a client-server architecture. It
can use INTERNET or UNIX sockets, that allow the system to be simulated on the same
machine or on a di�erent machine, as long as the calculation can communicate with the
server. Let’s take a look at the input files. The simulation example here will consist of
one Zundel cation in the canonical (NVT) ensemble at 300K.

Server : An example of an input file for i-PI can be found in
$HandsOn/tutorial_MD/exercise_1/input.xml.
It is an xml file, which is quite intuitive to learn. Please take your time to understand the
keywords that are there and consult the i-PI manual found in $HandsOn/tutorial_MD/doc.
We will be using UNIX sockets here, which is the most convenient way to use the code
when running both servers and clients in small desktop (or laptop) machines. For that,
we have to specify only the <address>, which can simply be a string containing a name
of your choice. For internet sockets, one would have to provide the relevant IP address for
the <address> field and a number for the <port> field.

Client : The keyword to add to the control.in file of FHI-aims is
use_pimd_wrapper UNIX:<address> <portnumber>

where<address> should be substituted by the name of the socket you choose, and the
port can be any number since it does not play a role for UNIX sockets. The address
that goes in the control.in file should match the one in the input.xml file of i-PI.
The geometry.in is only provided for the initialization of FHI-aims, so in order to avoid
inconsistency problems always check that the atoms are listed in the same order as
in the i-PI input file. (Here, we did that for you ;))
Note that in all subsequent exercises you will be free to choose <address> as you want,
and you should please change it in your input files (control.in and input.xml) so that
your server and your client always match!

Let’s run an i-PI+FHI-aims Molecular Dynamics simulation! Instructions
• Open a terminal at the current directory and launch i-PI by typing:

i-pi input.xml

• At this point i-PI should start and parse the input file. At the bottom of the output
on the screen it should say:
Created unix socket with address localhost
@ForceField: Starting the polling thread main loop.
This means i-PI has started properly, has created the UNIX socket, and is waiting
for the communications from the clients that take care of the force evaluations.

• Now we can launch FHI-aims. Open a second terminal, either manually or by typing
ctrl+shift+t, and enter the command:
mpirun -np 4 $HandsOn/bin/ipi.aims.x
Then FHI-aims should start and you will see some outputs.

• Now switch to the terminal where i-PI is running, notice that i-PI has built the
connection with FHI-aims with the following message,

4

@SOCKET: Client asked for connection from . Now hand-shaking.
@SOCKET: Handshaking was successful. Added to the client list.
and started the Molecular Dynamics simulation. It should also print on screen
information about the time taken for each MD step.

• What we are going to do now is to kill FHI-aims (don’t worry, you shall not be
sued for that). Simply switch to the terminal where FHI-aims is running and press
ctrl+c. Now look at whether i-PI is still running. Notice that although the evolution
of the MD is paused, i-PI itself does not die but instead continues to run and waits
for a new client to take over. Now start FHI-aims again by typing:
mpirun -np 4 $HandsOn/bin/ipi.aims.x
What happens to i-PI now?

• What if one stops i-PI? Trigger a soft exit of i-PI by typing ctrl+c at the terminal
where it is running, or create a file named EXIT in the folder where i-PI is running
(you can use the bash command touch EXIT). Watch how i-PI responds, and how
FHI-aims reacts. Think about what are the advantages of a clean exit when a MD
program stops unexpectedly.

• Take a look at all the output files written by i-PI. You should have the file ex1.out
that describes the system properties, ex1.pos.xyz that records the atomic trajec-
tories, and RESTART that contains all the information to restart the simulation.

Timing: ~20 minutes total

5

The microcanonical ensemble

Exercise 2: The importance of the SC convergence criteria

In this exercise, we will investigate the importance of the self-consistency convergence
criteria when simulating the microcanonical ensemble. The input files for i-PI can be
found in the folder exercise_2. Please note that the initialization in i-PI is done with a
previously thermalized geometry.
Instructions

• First, build an input file (control.in) for FHI-aims using the LDA (pw-lda) func-
tional and no spin polarization (spin none). Please don’t forget to specify the
charge (charge 1.0) and use the "light" numerical and basis set standards for the
species. Add the following line to tell FHI-aims that you need to compute the forces:
compute_forces .true.
Please refer to the manual for more information about these flags. We are going to
refer to this control.in as "default".
You can either create the control.in file from scratch or modify the one provided
in the previous exercise. In any case, do not add any flags that we do not mention.
They are not needed and might hinder the performance of the calculation.

• Add the line corresponding to the i-PI communication that was shown in the previous
exercise in the control.in file and assure that you specify the same address in the
input.xml file.

• Start a 0.15 ps MD run in the microcanonical ensemble, using a 0.0005 ps (�t =
0.5 fs) time step. For that, open the provided input.xml and change the lines
timestep and total_steps accordingly. You also need to specify the dynamics
mode to be ‘nve’. The file chosen for the initialization is a check-point file containing
positions, velocities, and some other settings from a previous simulation where this
molecule was thermalized, using the ‘nvt’ mode - that is what the ‘chk’ mode in
i-PI means. In this case, initializing from the checkpoint file means that i-PI will
read positions and velocities from it.

• After everything is set up, start the simulation in the following way

In order to start the run type:
i-pi input.xml > output_i-PI &

• (Wait 5 seconds in order to let i-PI do the initialization).
mpirun -np 4 $HandsOn/bin/ipi.aims.x > output_FHI-aims &

• The symbol & puts the run in the background, so that the output file is
created, but the terminal is free for other use.

• The simulations are time consuming. Meanwhile you might want to open
another terminal window and check the progress by typing:
tail -f <name-of-output>
Press Ctrl+c to exit.

• ATTENTION: do not start another FHI-aims run simultaneously.
That would slow down BOTH calculations considerably.

6

• When the previous calculation is over, run another simulation, keeping all parameters
mentioned above but changing the name of the output and also changing to the
following “loose” self-consistency convergence criteria:

sc_accuracy_rho 1E-2

sc_accuracy_eev 1E-1

sc_accuracy_etot 1E-2

sc_accuracy_forces 1E-1

• Finally, run another simulation with “extreme” self-consistency criteria:
sc_accuracy_rho 1E-7

sc_accuracy_eev 1E-6

sc_accuracy_etot 1E-9

sc_accuracy_forces 1E-7

IMPORTANT: Never use these settings in real production calculations. They are meant
only for this pedagogical exercise.
Reminder: Change the output prefix in the i-PI input in order to not overwrite any
output files.

When the simulation is done, plot the total energy, which is called conserved in the i-PI
language for NVE simulations (Why?), vs. the simulation time in xmgrace (or, any other
graphing platform of your choice) from the i-PI output file.
Can you see how the energy drifts with the “loose” settings? Find out what were the default
criteria for these thresholds that were applied in the first simulation of this exercise (hint:
you can find them in the FHI-aims output). How do they compare with the “loose” and
“really accurate” settings, with respect to this energy drift?
Ideally, there should be no energy drift, since the energy is conserved in the micro-canonical
ensemble. The reason for this drift is that we leave the true Born-Oppenheimer surface if
we don’t converge well our electronic structure; this leads to an unphysical (and undesir-
able) energy drift. Last but not least, check the total simulation time for each run. You
can find it at the end of the corresponding FHI-aims output file. Do you understand what
you observe? Do you understand now which compromise has to be fulfilled when deciding
the self-consistency convergence criteria?
Timing: ~20 minutes total

7

The canonical ensemble

Exercise 3: Testing thermostats

Most “real-life” experiments cannot be done in a situation where the energy is explicitly
kept constant, but where other quantities like the average temperature or pressure are
maintained instead. As you may know, an ensemble where the temperature is kept con-
stant is the a canonical ensemble. In order to simulate this ensemble, the system has to
be coupled to a heat bath. From a statistical mechanics point of view, the average kinetic
energy in the canonical ensemble follows the equipartition theorem, which says that it
is equally distributed on the various degrees of freedom of the system. Therefore, the
momenta p = mv follow the Maxwell-Boltzmann (MB) distribution:

P (|p|) =
3

—

2fim

43/2
exp

1
≠—|p|2/(2m)

2
. (2)

The instantaneous temperature T̄ is given by the relation T̄ = 2ÈKÍ
3kB

=
qN

i
|pi|2/mi

3NkB
, where

ÈKÍ is the average kinetic energy of the system, mi is the mass of atom i and N is the
number of atoms. This means that the temperature is not constant but can (and should)
fluctuate around the average value. The theoretical standard deviation is ‡

2 = 2T 2
3N . where

T is the target temperature. T should also be equal to the mean of the distribution, i.e.
T = 2ÈKÍ

3NkB
, where ÈKÍ is the average value of the kinetic energy.

We will here focus on stochastic schemes to simulate thermostats in molecular dynamics.
We will include a brief description of them below, as well as the idea behind other types
of thermostats that will not be studied in this exercise, but that are nevertheless quite
popular.

1. Extended Lagrangian approach: the Nosé-Hoover thermostat [5, 6].
Equations of motion derived from the Lagrangian of the system conserve the total
energy of the system. One can write an extended Lagrangian, by adding fictitious
degrees of freedom, such that the overall total energy is conserved but the atomic
subsystem can span ensembles other than microcanonical. With the Nosé-Hoover
Lagrangian, the atomic subsystem samples the canonical ensemble. The equations
of motion of the Nose-Hoover thermostat are:

ṙi = pi/mi (3)

ṗi = ≠
ˆU

1
rN

2

ˆri
≠ �pi

Q
(4)

÷̇ = �
Q

(5)

�̇ =
A

ÿ

i

p2
i

mi
≠ g

—

B

(6)

where g is the number of degrees of freedom of the system, U is the potential energy,
Q the “thermostat mass”, and pi and mi the momenta and masses of the ith particle
of the system, respectively. The conjugated momentum � of the extra coordinate ÷

acts as a fluctuating drag parameter to the atomic subsystem. The conserved energy
associated to the equations of motion is:

E =
ÿ

i

p2
i

2mi
+ U

1
rN

2
+ 1

2
�2

Q
+ g

÷

—
(7)

8

2. Stochastic velocity-rescaling thermostat (Bussi-Donadio-Parrinello)[7].
In this algorithm, a deviation of the instantaneous kinetic energy is corrected in the
following way:

dK =
Ë
K ≠ K(t)

È
dt

·
+ 2

Û
K(t)K

Nf ·
›(t) (8)

where K is the target kinetic energy, K(t) = p
2(t)/2m is the instantaneous kinetic

energy, · is the relaxation time of the thermostat, Nf is the number of degrees of
freedom, and › is a white noise term (the derivative of a Wiener process 1) that
obeys È›(t)›(tÕ)Í = ”(t ≠ t

Õ).
In practice the trajectory is first propagated for one time step with e.g. a velocity-
verlet integrator and the new velocities are calculated as usual. Then, the new
kinetic energy K is evaluated and the velocities are rescaled by a factor – such that:

–
2 = e

≠�t/· + K

Nf K

1
1 ≠ e

≠�t/·
2

Q

aR
2
1 +

Nfÿ

i=2
R

2
i

R

b

+ 2e
≠�t/2·

Û
K

Nf K

!
1 ≠ e≠�t/·

"
R1

where the Ri’s are independent random numbers from a Gaussian distribution with
unitary variance2.

For this thermostat a conserved pseudo-Hamiltonian H̃(t) can be defined:

H̃(t) = H(t) ≠
⁄ t

0

1
K ≠ K(tÕ)

2
dt

Õ

·
≠ 2

⁄ t

0

Û
K(tÕ)K

Nf ·
›(tÕ)

where H(t) is the total energy of the atomic system.
The Bussi-Donadio-Parrinello thermostat yields the correct distribution of K, does
not have ergodicity problems, does not perturb the dynamics, and its accuracy and
e�ciency is rather independent of · .

3. Nuclear quantum e�ects: the colored noise thermostat.
The colored noise thermostat is an extension of a Langevin thermostat; indeed
it is also called Generalized Langevin Equation (GLE) thermostat. The classical
Langevin thermostat is expressed through the following di�erential equation for the
momentum (here in one dimension, without loss of generality):

ṗ(t) = ≠“p(t) +

2m“T ›(t) (9)

where “ is a (friction) parameter and ›(t) is a stochastic variable distribute as a
Gaussian white noise as above.
The Langevin thermostat is constructed via a Markovian (i.e. memoryless) stochastic
di�erential equation. Its extension, which leads to the colored noise thermostat, is
constructed via introducing auxiliary degrees of freedom s to the dynamics. These
extra degrees of freedom model a Markovian process in higher dimensions, but give

1An example of a Wiener process W (t) is the Brownian motion (you might have heard about it...). W (t)
has the following characteristics: ›(0) = 0; W (t) is continuous; the increments are independent and
W (t2) ≠ W (t1) is a Gaussian with average 0 and ‡ = t2 ≠ t1.

2Note that
qNf

i=2 R2
i can be drawn directly from a suitable Gamma distribution

9

rise to non-Markovian dynamics when the fictitious degrees of freedom are integrated
out. The equations of motion are:

ṙ = p/m (10)
A

ṗ

ṡ

B

=
A

≠V
Õ(R)
0

B

≠ Ap

A
p

s

B

+ Bp

1
›

2
, (11)

where › is an array of uncorrelated Gaussian noises, V
Õ(R) is the gradient of the

potential and the Ap and Bp are matrices that obey the relation

ApCp + CpAT
p = BpBT

p , (12)

where Cp is the covariance matrix defined as Cp = È(p, s)T (p, s)Í. By integrating
out the s degrees of freedom, one gets dynamics of a non-Markovian process in the
physical variables, with the EOM given by

ṙ = p/m (13)

ṗ = ≠ˆV

ˆr
≠

⁄ t

≠Œ
Q(t ≠ ·)p(·) + ’(t), (14)

where ’(t) is a correlated noise and Q(t≠·) is a frequency dependent memory kernel
which depends on Ap. The fluctuation-dissipation theorem (FDT) (and canonical
sampling) is obeyed if È’(t)’(0)Í = kBTQ(t). However, the FDT can be broken and
one can enforce quantum statistic to some selected degrees of freedom (note: FDT
is equivalent to equipartition, thus breaking FDT implies breaking equipartition).
This is the way we will apply the thermostat in this exercise.
In the same spirit as the stochastic velocity rescaling thermostat, the colored noise
thermostat, defines a conserved pseudo-Hamiltonian:

H̃ = H ≠
ÿ

i

�Ki (15)

where �Ki is the change in kinetic energy due to the action of the thermostat at
the i-th time-step, and the sum is extended over the past trajectory.

Instructions part 1: Running the simualtions

• You will find some templates for the input files in the Exercise 4 folder. For this
exercise we will simulate H5O+

2 .
You should use a time step of 0.5 fs, which corresponds to the following line in the
i-pi input.xml file,
<timestep units=“femtosecond”> 0.5 </timestep>
and we will be simulating all systems at 300 K:
<temperature units=“kelvin”> 300 </temperature>.
Since we are simulating a canonical ensemble, the dynamics mode will be set to
“nvt”:
<dynamics mode=“nvt”>

10

• The control.in file provided in this folder is tailored to run fast (and inaccurate)
simulations, so that this exercise can be done within the time frame proposed here.
Please do not use this type of control.in file for real production calcula-
tions.

• Two of these thermostats, namely the Stochastic Velocity Rescaling and the Langevin
ones, have parameters that you can play with. In order to obtain reasonable results,
one should provide an educated guess for the value of these thermostats’ parame-
ters. In order to realize to which extent such user-given parameters can influence a
simulation, you are asked to try di�erent values for these parameters, as explained
below.

1. Stochastic velocity-rescaling thermostat (svr)
<thermostat mode=“XXX”>
<tau units=“femtosecond”> xxx </tau>
</thermostat>
Here tau (·) is a relaxation time of the thermostat, and is given in femtosec-
onds. Its value has to be chosen by the user (i.e., you!). The performance of
the thermostat depends on the value of · . In order to gauge the influence of
this parameter, we ask you to test two di�erent values for · : one value which
should yield a correct behavior, for example · = 20, and one more extreme
value, for example · = 500 or · = 0.002.

2. langevin
<thermostat mode=“langevin”>
<tau units=“femtosecond”> xx </tau>
</thermostat>

Just like for the SVR thermostat, you have to choose a value for · .

Instructions part 2: Analysing the results
• Use the script get_properties.py to extract di�erent properties, like the temper-

ature, the kinetic energy and the potential energy:

python get_property.py property ex4.out
where ‘property’ is a placeholder for the property you want to extract. You can
choose from ‘temperature’, ‘kinetic_md’, ‘potential’, ‘conserved’, ‘kinetic_md(H)’
and ‘kinetic_md(O)’. This will output a single-column file containing the desired
property without any change of units. Plot each of these quantity. Is it what you
were expecting ?

• Let us analyze a bit further the output. Use the script cumul_average.py in order to
obtain the the cumulative average, that is, the average temperature over time com-
puted at each step of the simulation. You can do this by running the following script:

python cumul_avg.py temperature.dat xxx
Here we assumed that ‘temperature.dat’ is your single-column file containing the
temperature of the system and xxx means that the first xxx data points are dis-
carded.

11

Please try di�erent xxx values and see how the cumulative average change. Do you
understand why? Can we assert that the system is correctly thermalized?

How do the di�erent thermostats you used perform? Are any of those working better
or faster?

• Please repeat the previous item for the potential energy (i.e first extract the data
from the ipi-output and then compute the cumulative average). Do you see a
di�erent behaviour? Can we assert that the system is correctly thermalized? From
which point?

• You can compute the correlation function and correlation time by typing:

python get_corr-time.py temperature.dat xxx

Here we assumed again that ‘temperature.dat’ is your single-column file containing
the temperature of the system and ‘xxx’ means that the first xxx data points are
discarded. The script will print in the screen the correlation time and will produce
a file with the correlation function.

Plot the autocorrelation function against time for the thermostats that you have
been working with. What are their correlation time ? (How) does it change with
respect to thermostat · parameter ?

• Repeat the same for the potential energy, does it behave similarly or not?
• Use the script get_avg.py in order to obtain the average and standard devia-

tions and then compute the average temperature and potential energy expressed
as ‘mean_value’ ± ‘uncertainty’. The syntax, as usual, is:

python get_avg.py temperature.dat xxx

Time estimation: ≥1h30m

12

References

[1] I. Newton, Philosophiæ Naturalis Principia Mathematica, London (1687)
[2] D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello Nature 397, 601 (1999)
[3] J. Kolafa, Mol. Simul. 18, 193 (1996)
[4] Kühne, Thomas D. et al., Phys. Rev. Lett. 98, 066401 (2007)
[5] D. Frenkel and B. Smit, Understanding Molecular Simulation: from algorithms to

applications, second edition, Academic Press 2002.
[6] S. Nosé, J. Chem. Phys. 81, 511 (1984). W.G. Hoover, Phys Rev. A 31, 1695 (1985)
[7] G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007)
[8] M. Ceriotti, G. Bussi, M. Parrinello, JCTC 6, 1170 (2010)

https://epfl-cosmo.github.io/gle4md/

[9] G. Martyna, M. Klein, M. Tuckerman, J. Chern. Phys. 97, 2635 (1992)
[10] M-P. Gaigeot, M. Martinez, and R. Vuilleumier, Mol. Phys. 105, 2857 (2007)
[11] J. Borysow, M. Moraldi, and L. Frommhold, Molec. Phys. 56, 913 (1985)
[12] R. Ramirez, T. Lopez-Ciudad, P. Kumar, and D. Marx, J. Chem. Phys. 121, 3973

(2004)

13

