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What are we going to achieve?

® There are multiple ways to introduce second quantization
relevant to specific research field:

» Quantum field theory
» Condensed matter theory
» Quantum chemistry

® Here we consider second quantization from the perspective of
Computational Quantum Chemistry — as a basis for
many-body wave-function expansion

® We will focus on nonrelativistic electronic structure problem
which consists of two problems:
1. One-electron problem — usually we use basis set of AO or PW
2. Many-body problem — usually we need many-body basis set to
go beyond mean field (HF, DFT)

Goal is to introduce a formalism for solving many-body problem
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Notations

® )\ electrons

e Wave-function W(&1,&2,83,...,&N)

Antisymmetric with respect to exchange of any &, < &

& includes both spatial and spin coordinates, x and o

Hamiltonian

N
H(Er, - én) = D H () + ) W(k &)
k=1

k<l

One-electron Hamiltonian is usually H1¢(¢) = —%A + V(&)

Electron-electron interaction W(&1,&2) is usually the Coulomb
repulsion
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Density matrices
V is rarely needed — all practically relevant observables (including
Hamiltonian!) can be obtained from le and 2e density matrices.
® le transition density matrix

p}lle¢(§1;n1):N/w(§1;C2,C37"'7CN) (7717C27<37--~7CN)dC2dC3-~- dCN

® 2e transition density matrix

p%lle¢(£17§2; 7717772) = N(Nil) / w(§13€23 C3a ey CN)a(nla 2, §37 ey CN) dC3 cee

Examples:
® electron density pi,(¢)
* transition dipole moment (| e "8, & W) = e [ € ple,(€)de
® Hamiltonian

d¢n

(®IHW) = / (e m)pkia(n, ) dn e / W(&1, &2)ps (61, &) dé1 &

p*(€) = p™(£,€), (&, &) = p*°(&1, €261, &), (H™9) (€) = [ h*(&,m)¢e(n) dn
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Questions

1. What is H'¢(¢) for a molecule or a solid?

2. H'¢(¢) is not a many-body operator. How to construct its
many-body version?

3. In analogy with DFT we can use variational method over
0%¢(&1,&2). What is the main challenge in this approach?
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Slater determinant

The simplest representation of W(&1,&2,&3,...,&y) is via sum of
products of one-electron functions. Because of permutational
antisymmetry, the elementary many-electron basis function is given
by Slater determinant:

P1(&1) (&) .. (én)
‘w1’w27 o ’wN>(£17 o 7§N) — 1 ¢2(§1) 1/)2(62) s ¢2(§N)

YT
Yn(&) Yn(€2) - Yn(én)
Basic properties

® Nonzero only if {1;,i = 1, N} are linearly independent
o If 1/1; = Zj T,'jl/]j then |’¢1, e ,1/);\, >= det T|¢1, ce N >
=

» invariant under unitary transformations
» can always be considered orthonormalized
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Slater determinant: many-body matrix elements
® QOverlap matrix

(pilr)  (prlg2) oo (prldn)
(P15 on|YL, - N) = (paln)  (walth) - {paltm) =detO

Conlé) (onla) oo (onlibn)

® One-electron operators*
(DIA(EL) W) =
where Ay = [ 4;(£)(Api)(€) d¢

® One-electron transition density matrix

Voo
pe(&n) = det OZ Z¢i(§) (071) , @x(m)
ik

det O

tr AO~!

here and below Z:U means sum over all ¥; in W = |¢1,...,9pn)

If O is degenerate use its minors or take limit to find O~'det O
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Slater determinant: 2e matrix elements

® FElectron-electron interaction

det 0 o -1 -1
(PIW (&1, &2)[W) :mZZ(Wikﬂ_ W) (071),; (O )lj
ij ki

where* Wig = [ 9;(€)0;(n)W (&, n)er(€)pi(n) A dn = Wi
® 2e transition density matrix

1

2e . —
P\u¢(€17§2. 7717772) - det O

pr(&im) pe(&im)
pre(&nim)  pe(&ain2)

Be very careful with indices in W — different conventions might be used
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Questions

1. What other representations of many-electron wave-functions
do you know, e.g. explicitly correlated?

2. Any examples of practical use of unitary invariance of Slater
determinant?

3. What will be an analog of Slater determinant for bosons?
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N-electron basis
If {¢j,i € A} is a complete basis of one-electron functions then

Cn(A) ={ |[Yis- - ¥iy)y, h<i<...<in}

is a complete N-electron basis

Notations
|¢,’1,... ,T/J,'N> = ‘I'l,. . .,iN> = ‘I>
Also one can use occupation numbers |n1, np,...), where nj is
number of electrons (0 or 1) with le-function #; and so forth.
L |p2(xa)xt(o1)  e1(xa)xy(o1)

example: |91 =[2) = —
Pl 196) =110 = 5 |oaa)xi(o2) erle)xi(o)
Wave-function expansion

Cn(A)
V= Z G|l
Cn(A)

> hc = N!/wil(fl)"~wiN(fN)w(§1w~7§N)dfl'w dén

J
where (I|J) = det O(¥jy, ..., Yiyi Vi - - Vjy)
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Fock space

A
Fock space C(A) = @ Cn(A)
N=0

Notations: an operator A in coordinate representation will be
denoted A in C(A) so that e.g. Hamiltonian reads H = H!® +W

Now let's introduce operators c;|/) = P(i, 1) |/\i), where

1, i occupies odd position in /,
P(i,1) =< —1, i occupies even position in /,
0, ié¢l

Example: ¢1|125) = |25), c2]|125) = —|15), c3|125) =0

Note that these operators anticommute: {c;,c;} =0
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Now all many-body objects can be written in compact form

(using c; and their hermitian conjugates c;")

(|cckld) = P(i, 1)P(k, J) det O/ = (o*) det O
ki

)kj
)

i

°
©

(Iei ¢f crew|d) = det O

A LA
1
H= E cHHigck + 5 E ¢ ¢ Wikjieicx
' okl

(P5o) 0 = (Olef culW), (PW)I«U (@lcf cfercal V)

1

le 1 2

E= E Hifpis + > E Wik pisi
ikl

Many-body problem has been reduced to matrix diagonalization
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Creation and annihilation operators

Now let's consider orthonormalized le basis. Then

(P¥) i /@01(5)9\%(5; n)k(n) d§ dn

and
iy =P(i, 1Ui) |1Ui)

so that we can call cf creation operator* and ¢; is annihilation
operator.

Properties

® Anticommute: {c;,c;} =0, {c,c J =0, {cf,¢j} =4
* Generate basis: |/) = [];c,; ¢ |)

® n; = c'c; is electron number operator: n;|/) = Z{i € I}|)

Often denoted as c| — reasonable if it is not hermitian conjugate of c;
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Hamiltonian becomes sparse
< I|H|J > is nonzero only in three cases:

e [ = J then
!

1e
E :H” 2 E : iijj — UJ’

i

e /[ and J differ by i € | and k € J, then

i
(—1)"HiE + (=1)" Z(Wikjj— Wiiik)
J
where m is number of indices in [ N J between i and k

® | and J differ by {i < j} € I and {k < I} € J, then
(=1)™(Wikjr — Wiik)

where m is sum of number of indices in / N J between i and j,

and between k and /
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Questions

1. Complete the formula: if ¢; = ZjeA Tijpj then

1Dy =2 s=i? ? |J),. What is the name of this
formula in mathematics?
2. Why do we need Fock space if N is fixed?

3. What will change in case of bosons?
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Spin-orbitals

Let's separate spatial and spin coordinates (&) — (x)x(c)

Let's consider spin-independent Hamiltonian, then S? and S, are
integrals of motion, and separation of x and o variables is exact

Notice: in general
® V is not a product of coordinate and spin part
e Slater determinant is not an eigenfunction of S2
52 = 522 + %Nunpair + Zzﬂipi ﬂipj
iet jeld
But
® S, can be easily diagonalized by fixing Ny and N| so that
N = Ny + N, S, =(Ny — Ny)/2

® matrix elements are diagonal in spin
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Spin-orbitals: wave-function

V=

{2t
by =10

Ill

corresponds to Slater determinant on
{@Z}i{XT’ ¢'§XT’ cee 77;[)i{/X¢, wiﬁ/xi’ .

Then the spin-flip operator multiplies |/T, I¥) by (—=1)™, where m is
the number of transpositions required to reorder le functions

Basis transformation:

‘/T’ /i)w - Z det 7)1 yrdet Ty ’JTv JJ’)«p
JIT =] = 1
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Spin-orbitals: operators
Matrix elements are similar but acquire spin indices:

% = 0or (7 |AIVR) = 6or AT

W™ = Soudro (] ()] (NIWIDE ()T (1)) = 8u6rg Wi
Many-body matrix elements acquire spin summations:
Op = O(#1, -, P, 975+ ¥R,)
det O =]JdetO,, trAO'=) trA70;"

>3 W (079, (07), -

ij kI

0' ¢T lUO’ 7'

ﬁzzzzz lkJ/ :ZZ) (OU_l)ki (O’F_l)lj
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Spin-orbitals: Fock-space operators

el 14y = P, 1Ty (M), 1)
ci [T, 1Yy = (~1)"PG, 1) 1T (1))

T I JYY = (T I JY) = det Oy det O) = det O
U Ve cr | T, JY) = 64r (o;l) ‘det O

6”“(0;1)/«' Orv (OT l)kj

(Sa(p (Od—l)li 5[_() (OT ) det O

(I 1M et o cipero | JT, JY) =
lj

A T A TN
H= ZZC o+ D D el Whgrcircio
Id k, oT

Spin indices are absent if spin-up and -down orbitals are spatially the same
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Questions

1. When Slater determinant is an eigenfunction of S2?
2. What is origin of spin contamination in UHF/UDFT?

3. Diagonalization of S? is algebraic (as an angular momentum
of a spherically symmetric problem). What is the name of
formula/coefficients solving this problem for the case of two
particles?
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Example: spin part for two electrons
°5=0
Ve &) = X 20) = Des (o) () = (i (o2)

where X(x1, x2) is symmetric function
[ ] S = 1

xt(o1)x1(02), S, = +1,
V(&1, &) = X(x1,x2) ¢ xy(o1)xy(02), S, =-1,
75 Daa(on)xu(02) + xu(o1)xp(02)], S: =0,

where X(x1, x2) is antisymmetric function

Notice that the last function cannot be written as single Slater determinant
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Example: H, molecule in one-orbital approximation

E. hartree

1.0+

0.5

R, bohr
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H, molecule: basis
One-electron basis consists of two orbitals 1 and ¢» centered on

the 1st and 2nd hydrogens respectively. Let s = (p1|p2). The
one-electron Hamiltonian

Hle — &9 +0/\121 . t
t12 35 + /\212

Many-body basis for N =2 and S, = 0 consists of 4 functions:
1. 13, 13 13)

The overlap matrix for this basis is

1 5 s s?
.01 s s

5= el ... 1 s
1
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H, molecule: Hamiltonian

269 + 20101 + Wiy s 4 sApo1 + 0 4+ Wapo sed 4+ shig + © + Wapo 25t + Wi
. €9 4+ €3 + Ao + Aoia + Wi 2st) + W s + shg1o + t0 + Winp
e €Y+ €3+ Aoy + Moro + Wia sed + sAapp + 0 + Wi
. 2e3 + 212 + Wap

After simplifications and redefinitions we obtain:

U t t 2st

/
H =20+ v 2\5; :
U
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H, molecule: orthogonalized basis

0= e (1)~ 13)
0= s (D) +13) ~ s (1) +1D)
5= (D4 1D) ~ = (1) +13)

or in coordinate representation

1 (1) £]2)) = e1(x)p1(x) £ @2(x)pa(x2) xt(o1)xi(02) = xu(01)x1(02)
2 1 2 \/5 \/§

1 (13)=[2)) = P1(x1)p2(02) = 2(x1)p1(x2) xt(o1)x1(02) F xu(01)x1(02)
2 2 1 \/E \/§
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H, molecule: solution

E, hartree

1.5+
1.04

0.5+

0 T T
l N~ ——F o

* triplet 3L, can be easily identified with (|3) —[2))
® odd singlet ¥, can be identified by symmetry: (|1) —|3))
® other two states are given by
W e (1) +(3)) e (13) + 7))
if correlation factor 7 = 0 we get single Slater determinants
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