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§1. Introduction

Our starting point is Holstein—Peierls Hamiltonian:

1
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where cZT is the quasiparticle (Frenkel excitons, holes etc.) creation operator and bl) is the localized phonon

(normal mode) creation operator. The notations for the one-electron Hamiltonian are as follows:
Hl-lje = 5”'82' + (1 — 5i')tij7 (1.2)

here ¢; is on-site energy and t;; is transfer integral. Electron-phonon coupling described by the constants
Gija = Gjia is called local for i = j (Holstein model [1]) and nonlocal otherwise (Peierls model [2]). In (1.1) the
localized basis is chosen for phonons, for plane waves « is the wave vector and the last term must be modified
as follows

(bg + ba> = (bg + b_a> . (1.3)

The classical limit of the Hamiltonian (1.1) can be obtained by reversing the formulas of Appendix A
yielding

1 N
> Hifcle; + 5 > hwa (%253 + 53) +V2) hWagijafaClC) (1.4)
ij o ijo
or . 1
Z Hiljecz‘rcj T3 Z Mo} + 5 Z UapTaZs + Zgijaxacgcj, (1.5)
i « af ijo
where
gija = M, Z Taﬁ 277/(,05 wpg GijiB- (16)
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§2. Adiabatic polaron

Here the adiabatic limit means that the electronic dynamics is much faster than the vibrational dynamics.
In this limit the Holstein model is exactly solvable: at fixed positions of atoms in (1.5) we solve the one-electron
Hamiltonian whose matrix elements are

HE +Y " Gijota. (2.1)
(0%

Now having the electronic wave-function ¥ we apply (V| - |¥) averaging to (1.5) and obtain Newton equation
for atoms:

Maia + Z Unprs + Zﬁz‘jaﬂ% =0 or &u+wl|ét \@Zgijap?jl‘ ; (2.2)
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where p® is the electronic density matrix. The solution of this equation is harmonic vibrations with frequencies
wq around the stationary solution which in notations of Appendix A can be written as
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(note that this formula is implicit because the electronic density depends on atomic coordinates). This station-
ary solution can be called adiabatic polaron, which can be hole polaron, electron polaron, Frenkel exciton etc.
The polaron total energy is given by E®! — \, where

A\ = Z S hwg, (2.4)
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is the polaron relaxation energy and
2
Sa = Zgijozpzel‘ (2'5)
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are Huang—Rhys factors. Quantum fluctuations can destroy the classic solution so that the adiabatic polaron
is well defined only in the strong coupling limit. In this case it is called small polaron.

It is convenient to choose adiabatic polaron wave-functions for the one-electron basis, because in this case
(2.3) and (2.5) will read

€0 = —V2gii and S, = g2, (2.6)

where ¢ enumerates the adiabatic polaron solutions. In this basis transfer integrals and the corresponding
nonlocal couplings are not independent but must satisfy the condition that for each polaron site i

HiP+> " gijaxQ(i) = 0 if j # 1, (2.7)
«
yielding
ti; = Z 2hwaGiiaJija- (2.8)
«

83. Donor-acceptor system and transition spectral density

Let consider two weakly interacting systems such that there are two adiabatic polaron solutions each
localized on one system only. The rate of polaron transfer between the systems can be calculated using Fermi’s
golden rule:!
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'Here and throughout the text a sum/integral without limits means the summation/integration over the whole domain.



