
AMM lecture Beyond DFT 1 1

Advanced Materials Modeling
Beyond DFT 1

+ Many-body physics 
+ The total energy : Quantum monte Carlo
+ Experiments : total energy, band gap, spectroscopies ?
+ Charged excitations and Green’s function G
+ GW approximation (incl. self-consistency and miscellaneous tricks)
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Richard M. Martin, L. Reining, and D.M. 
Cepreley

Cambridge University Press, 2016

Interacting electrons: 

Theory and computational approaches 

(ISBN: 978-0-521)87150-1) 

A basic reference
on first-principles
simulations of
Interacting electrons
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Many-body physics
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Electronic Hamiltonian, in atomic units (without spin-orbit) :

• Born-Oppenheimer approximation.
• Nuclei are treated as distinct particles, without spin. Internal structure is 

neglected. Only charge, mass and (classical) position taken into account. 

Wavefunction : 
Ψe(r1,σ 1,r2,σ 2,...,rn ,σ n;R1,R2,…RN )

T̂e = −
∇ri
2

2i=1

n

∑ V̂ee =
1

ri − rji, j( )
i< j

(n,n)

∑V̂eN =
A

N

∑ −ZA

ri −RAi

n

∑

+ antisymmetry for electron exchange

Systems with n electrons and N nuclei

Ĥe = T̂e + V̂eN + V̂ee
Ĥe Ψe = Ee Ψe



AMM lecture Beyond DFT 1 5

Classical objets : fields
or trajectories

p(r,t),V (r,t),T (r,t),E(r,t),...
R1(t),R2 (t),R3(t),...RN (t)

Quantum objects : wavefunctions
for interacting particles Ψ(r1,r2 ,r3,...,rN ,t)

Classical position and speed of 8 objects 
2x3x8=48 real numbers.

Oxygen atom : 8 electrons.
Quantum description, on a cubic grid of 10x10x10 
points.
24-dimensional object => 10   complex numbers24

Many-body wavefunction representation

HF, DFT : set of wavefunctions for non-interacting particles
For the oxygen atom, back to 8x10x10x10 real numbers,
but with an approximate treatment ...
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(1) Arguments of wavefunction :

Ψe(r1,σ 1;r2,σ 2;...;rn ,σ n )

V̂ee =
1
riji, j( )

i< j

(n,n)

∑

Ψe(1 , 2 ,..., n )

“1” becomes a symbol to denote
(2) Define also rij ! ri − rj

and “one-particle” part of Hamitonian

ĥN (i) ! −
∇ri
2

2
+ V̂N (ri )

ĥN
i

n

∑ (i)+ 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = EeΨe(1,2,..., n )

Simplified notations

V̂eN =
A

N

∑ −ZA

riAi

n

∑ =
i

n

∑ V̂N (ri )

r1,σ 1

Hamitonian becomes :
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Interelectronic coupling does not
allow to separate electronic coordinates

ĥN
i

n

∑ (i)+ 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = EeΨe(1,2,..., n )

Mean-field approximation (like DFT)

Separation of variables

1
riji, j( )

i< j

(n,n)

∑ replaced by 
i
∑ V̂Hxc(i)

ĥMF
N

i

n

∑ (i)⎛
⎝⎜

⎞
⎠⎟
ΨMF ,e(1,2,..., n ) = EMF ΨMF ,e(1,2,..., n )

ĥMF
N (i) = ĥN (i)+ V̂Hxc(i)

gives solutions as 
Slater determinants of 1-particle wavefunctions
mean-field energy=sum of 1-particle eigenenergies,
must be corrected to give electronic energy (avoid double-counting)

+ antisymmetry for electron exchange

+ antisymmetry for electron exchange
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ĥN
i

n

∑ (i)+ 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = EeΨe(1,2,..., n )

Monte Carlo approaches

Variational Monte Carlo
Diffusion Monte Carlo
Diagrammatic Monte Carlo
Green’s function Monte Carlo
…

“Monte Carlo” refers to stochastic evaluation
of high-dimensional integrals using random sampling,
and generation of such samplings using random walks

Usually : target evaluation of the ground-state energy
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Monte Carlo approaches
(brief overview)
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ĤeΨe(1,2,..., n ) = ĥN
i

n

∑ (i)+ 1
riji, j( )

i< j

(n,n)

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
Ψe(1,2,..., n ) = EeΨe(1,2,..., n )

Variational Monte Carlo (VMC)

Use the variational principle to approximate ground-state energy

Slater determinant,
antisymmetric upon 
electron exchange

Ψe,trial (1,2,..., n ) = f (rij )
i, j( )
i< j

(n,n)

∏
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
ΨSD (1,2,..., n )

Jastrow factor, symmetric upon 
electron exchange, builds-in
correlation between electrons
f tends to 1 at large separation,
and to zero at small separation

Simplest form of VMC : use trial wavefunctions of the type

Ee,GS = min Ψe Ĥ e Ψe < Ee,trial = Ψe,trial Ĥ e Ψe,trial
Ψe normalized

Jastrow-Slater
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Challenge : multi-dimensional integrals

Evaluation of Jastrow-Slater wavefunction energy expectation, 
then optimization of orbitals of Slater determinant and Jastrow factor ?

Ψe(1,2,..., n ) = f (rij )
i, j( )
i< j

(n,n)

∏
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
ΨSD (1,2,..., n )

No simple expression for the expectation value, 
unlike with Slater determinants 

Ψe,trial Ĥ e Ψe,trial with

and

Ĥe = T̂e + V̂eN + V̂ee

T̂e = −
∇ri
2

2i=1

n

∑ V̂ee =
1

ri − rji, j( )
i< j

(n,n)

∑V̂eN =
A

N

∑ −ZA

ri −RAi

n

∑

Ψe,trial Ĥ e Ψe,trial = ...∫ Ψe,trial
* (1,…N )ĤeΨe,trial

* (1,…N )d1∫ ...dN
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Stochastic evaluation

Standard multi (few) dimensional integration of dimention d :
sample with homogeneous grid of L points in each dimension,
with step h inversely proportional to L . 
Total number of points M=Ld
Convergence of Simpson rule error

Ψe,trial Ĥ e Ψe,trial = ...∫ Ψe,trial
* (1,…N )ĤeΨe,trial

* (1,…N )d1∫ ...dN

ε = (1 / L)4 = M −4/d

Random sampling ε =M −1/2
Better than fixed grid 
technique for d > 8 !



AMM lecture Beyond DFT 1 13

Importance sampling
Sampling point distribution : generated from the trial wavefunction, to 
favour the configurations that have higher probability

Π(1…N ) =
Ψe,trial (1…N )

2

Ψe,trial (1…N )
2
d1…dN∫

Metropolis algorithm to generate a random walk in the multi-dimensional 
space                 for  i=1 … M, 
whose probability distribution tends to
by randomly generating new configurations and accepting/rejecting them

(1…N )i
Π(1…N )

Ψe,trial Ĥ e Ψe,trial = lim
M→∞

1
M

EL
i=1

M

∑ (1…N )i( )Then evaluate

where EL (1…N )( ) = Re ĤeΨe,trial (1…N )
Ψe,trial (1…N )
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Diffusion Monte Carlo
Consider time-dependent Schrödinger equation in imaginary time

i! ∂
∂t

Ψe(t) = Ĥe Ψe(t) ⇒ − ! ∂
∂τ

Ψe(τ ) = Ĥe Ψe(τ )

Propagate initial trial wavefunction                              using such Eq.                        Ψe,trial (τ = 0)

Ĥe Ψ i = Ei Ψ iComplete set of eigenfunctions of Hamiltonian                       

Decomposition of                       Ψe,trial (τ = 0) = ci Ψ i
i=1
∑

Ψe,trial (τ ) = cie
−Eiτ Ψ i

i=1
∑

Solve imaginary-time Schrödinger equation                        Ψ i (τ ) = e−Eiτ Ψ i

Hence, in the large-time limit Ψe,trial (τ ) → Ψe,i=Ground State

Diffusion Monte-Carlo = generate a random walk using imaginary-time
Schrödinger equation 
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Accuracy of Quantum Monte Carlo
Variational Monte Carlo : 

quality of Energy estimate depends directly on trial wavefunction

Diffusion Monte Carlo : 
quality of Energy is partly dependent on trial wavefunction

Still not exact ! 
Indeed, the antisymmetry of the sampling of the random walk is
hard to maintain => fixed-node approximation (and fixed-node error)

VMC  H2
benchmark :
total 
energy
difference
wrt
numerically
exact results
With improved
Jastrow

NiO lattice parameter, cohesive energy
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Early outcome of Quantum Monte Carlo
Accurate evaluation of exchange-correlation energy
Ceperley and Alder, Phys. Rev. Lett. 45, 566 (1980).
Basis of most DFT parameterizations  (LDA, then GGA, hybrids, etc)

From R. Martin “Electronic structure” book, p.109
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Quantum Monte Carlo codes
QMCPACK

https://qmcpack.org
Jeongnim Kim et al , J. Phys.: Condens. Matter 30, 195901 (2018)

CASINO
https://vallico.net/casinoqmc
RJ Needs, MD Towler, ND Drummond and P Lopez Rios

J. Phys.: Condens. Matter 22, 195901 (2010)

https://qmcpack.org/
https://vallico.net/casinoqmc

