FHI-aims capabilities for molecules, clusters, and solids

FHI-aims

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

Main focus:

• Accurate all-electron electronic-structure calculations (DFT and beyond) for both periodic and cluster/ molecular systems

• Massively parallel

Robust interface: atomic simulation environment (ASE)

Approximations to the electronic problem: Basis set

Idea: represent all unknown functions ($\rho(\mathbf{r}), \psi_i(\mathbf{r})$ **) as a linear combination of known functions with well-defined properties:** $\psi_i(\mathbf{r})$ = $\psi_i(\mathbf{r}) = \sum C_{ip} \varphi_p(\mathbf{r})$ *p* **Widely used basis sets:**

gaussians $x^{\iota}y^{\jmath}z^{\kappa}$ $\exp(-\alpha r^2)$ (localized, analytic integrals) 2 *x y z* **exp**($-ar$) i $\frac{1}{2}$ i $\frac{1}{2}$ k $\frac{1}{2}$ $\frac{1}{2}$

plane waves $exp(i\mathbf{k}\cdot\mathbf{r})$ (delocalized, analytic integrals)

Slater-type $x^l y^J z^K \exp(-\alpha r)$ (localized, nuclear cusp) i $\frac{v}{z}$ $\frac{k}{z}$ $\exp(-\alpha t)$

 $\mathbf{grid}\text{-}\mathbf{based}\;\delta(\mathbf{r}-\mathbf{r}_i)$ (localized, analytic integrals)

Core electrons are often treated separately (pseudopotentials, planewave + localized basis)

The basis set: Numeric atomic orbitals

$$
\varphi_{i[lm]}(\bm{r})=\frac{u_i(r)}{r}\cdot Y_{lm}(\Omega)\Bigg]
$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

The basis set: Numeric atomic orbitals

$$
\left(\varphi_{i[lm]}(\bm{r})=\frac{u_i(r)}{r}\cdot Y_{lm}(\Omega)\right)
$$

Many popular implementations: DMol³ (Delley), FPLO (Eschrig et al.), PLATO (Horsfield et al.), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

 $\bullet u_i(r)$: Flexible choice - "Anything you like."

- \rightarrow Localized; "naturally" all-electron
- \rightarrow The choice of efficient and of enough radial functions is obviously important
- \rightarrow We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations efficient and accurate approach

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

"Pool" of trial basis functions: $2+$ ionic $u(r)$ Hydrogen-like $u(r)$ for $z=0.1$ -20

Optimization target: Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

tic hierarchy of ϵ , iterative struction limers

The basis set: additional parameters to converge

$$
h_{ij}=\int d^3r \varphi_i(\bm{r})\hat{h}_{\rm KS}\varphi_j(\bm{r})
$$

• Discretize to integration grid:

$$
\int d^3r f(\bm{r}) \rightarrow \sum_{\bm{r}} w(\bm{r}) f(\bm{r})
$$

... but even-spaced integration grids are out: $f(r)$ strongly peaked near all nuclei!

- Overlapping atom-centered integration grids:
	- Radial shells (e.g., H, light: 24; Au, tight: 147)
	- Specific angular point distribution ("Lebedev") exact up to given integration order l (50, 110, 194, 302, points per shell)

<u>Pioneered by</u> Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Electronic structure methods

Quantum chemistry & many-body theory:

$$
\left(\hat{\mathcal{H}}\Psi=E\Psi\right)
$$

... successive refinement of Ψ

"Perdew's ladder"

to exact solution

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

 $E_{\text{tot}} = E[n(r)] = T_s[n] + V[n] + V_{\text{es}}[n] + E_{\text{xc}}[n]$

cost,
accurac) • Key practical approximation: E_{xc} response / many-body terms: RPA, SOSEX, ... hybrid functionals: non-local exchange meta-GGAs: $\nabla^2 n(r)$, $\nabla^2 \varphi(r)$ Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): $n(r)$

Part I: atom and molecule

Problem I: Hydrogen atom

Tasks:

- Input files needed to run FHI-aims.
- Test the convergence of the total energy with basis size.
- Compare the total energy of the hydrogen atom computed with different methods implemented in FHI-aims. Do all methods converge to the same result?

FHI-aims input files

geometry.in

$#$ Atomic structure

х y z

atom 0.0 0.0 0.0 H

atom 1.0 0.0 0.0 H initial_moment 1.0

That's a comment

Units: Positions in Å Energies in eV

control.in

 $#$ Physical model settings xc pw-lda charge 0. spin collinear

$#$ SCF convergence settings

sc_accuracy_eev $1E-2$

sc_accuracy_etot 1E-5

 $1E-4$ sc_accuracy_rho

sc_iter_limit 100

 $#$ Species specifics

. . .

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

• light

Increased accuracy:

- tight
- really tight

Basis Hartree potential Basis cutoff potential Integration grids

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

- \bullet light
- \bullet tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Additionally converge "tiers"

Invoking FHI-aims ...

Reading file control.in.

Reading geometry description geometry.in.

Preparing all fixed parts of the calculation.

Geometry independent preparations Basis set generation

1

Geometry dependent preparations Integration grid Initialization of charge density

First SCF cycle

» Self-consistency convergence accuracy

6

Sixth SCF cycle

» Self-consistency convergence accuracy

6

Self-consistency cycle converged.

» Energy and forces

Total energy uncorrected : - 0.130198526094581E+02 eV Total energy corrected \div -0.130198526094581E+02 eV | Electronic free energy $-0.130198526094581E+02$ eV \mathcal{L}

» SCF info

| Number of self-consistency cycles : - 6

» Timings

Have a nice day.

Self-consistency cycle converged.

Structure optimization

- » Get next relaxation step
- » Redo SCF for new geometry

Have a nice day.

8

Problem II-III: H₂

Tasks:

- Learn how to optimize geometry with FHI-aims.
- Calculate relative energies of different spin states.
- Calculate the atomization energy (ΔH_{at}) .
- See how geometry and atomization energy depend on the exchange-correlation functional.

Problem II-III: H₂

From now on, run FHI-aims via the batch system:

1) copy the file job.sh from the tutorial folder to your working directory

2) submit a job: sbatch --ntasks=XX job.sh

3) To see the progress, type tail -f output

Part II: periodic system

geometry.in

Important practical points

• Each calculation one directory, for example

- > mkdir tutorial1
- > cd tutorial1
- $>$ mkdir 02
- 2 input files (plus 1 for pseudopotential embedding)

geometry.in control.in

• Launching FHI-aims calculation

sbatch --ntasks=XX job.sh

Visualization

Orbitals and densities

Keyword in control.in

output cube eigenstate homo cube filename HOMO.cube output cube total_density cube filename tot_dens_uc.cube

Get: *.cube file - values on a regular 3D grid. Software: imol

 \Rightarrow Appendix of handout

Lab 2: Calculate phase diagram of γ **-Al₂O₃ (110) surface in NO atmosphere**

Lab 2: Calculate phase diagram of γ **-Al₂O₃ (110) surface in NO atmosphere Both team and individual work**

- **1) Relax NO molecule (team)**
- **2) Construct surface slab model from bulk (team)**
- **3) Place NO at the surface in three different configurations and** *different* **coverages for each student (overall 27 structures) (team)**
- **4) Distribute the structures among students evenly (3 each) (team)**
- **5) Test convergence of NO adsorption energy as a function of the number of relaxed bottom layers for one structure (individual)**
- **6) Choose the optimal number of relaxed layers (team)**
- **7) Relax the structures, report the energy, discuss the difference between starting and final geometries, calculate, report, and discuss work function (individual)**
- **8) Build a surface phase diagram in NO atmosphere combining all obtained energies (team)**