FHI-aims capabilities for molecules, clusters, and solids

FHI-aims

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

Main focus:

 Accurate all-electron electronic-structure calculations (DFT and beyond) for both periodic and cluster/ molecular systems

• Massively parallel

Robust interface: atomic simulation environment (ASE)

Approximations to the electronic problem: Basis set

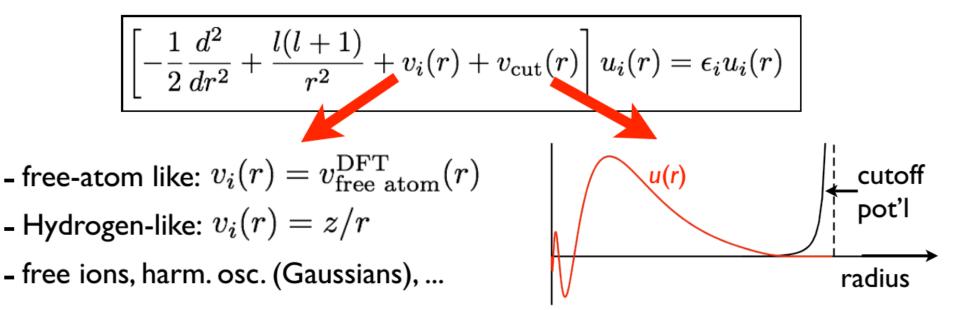
Idea: represent all unknown functions ($\rho(\mathbf{r}), \psi_i(\mathbf{r})$) as a linear combination of known functions with well-defined properties: $\psi_i(\mathbf{r}) = \sum C_{ip} \varphi_p(\mathbf{r})$ Widely used basis sets:

gaussians $x^i y^j z^k \exp(-\alpha r^2)$ (localized, analytic integrals)

plane waves $exp(i\mathbf{k} \cdot \mathbf{r})$ (delocalized, analytic integrals)

Slater-type $x^i y^j z^k \exp(-\alpha r)$ (localized, nuclear cusp)

grid-based $\delta(\mathbf{r} - \mathbf{r}_i)$ (localized, analytic integrals)


Core electrons are often treated separately (pseudopotentials, planewave + localized basis)

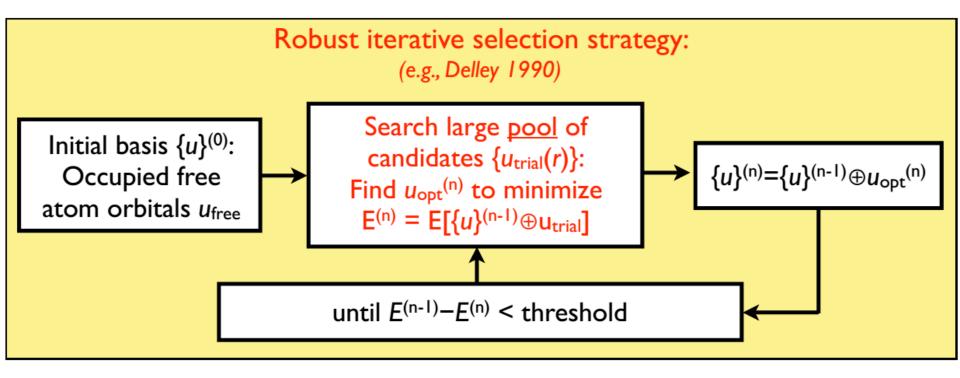
The basis set: Numeric atomic orbitals

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

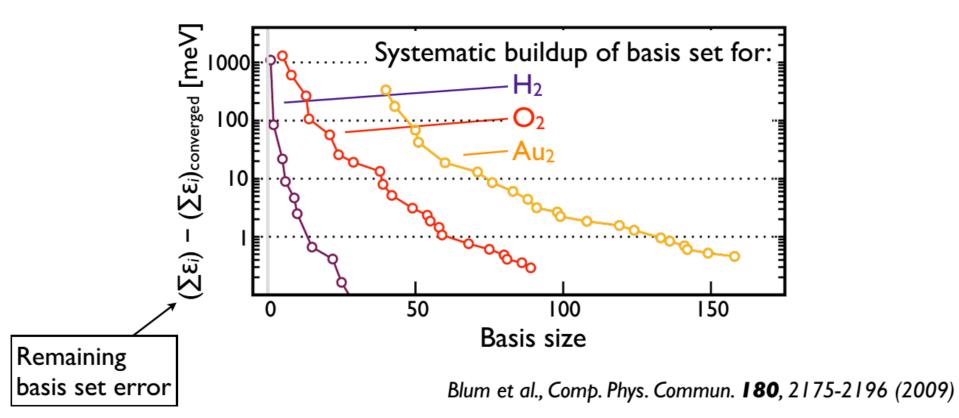
The basis set: Numeric atomic orbitals


$$\left(arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)
ight)$$

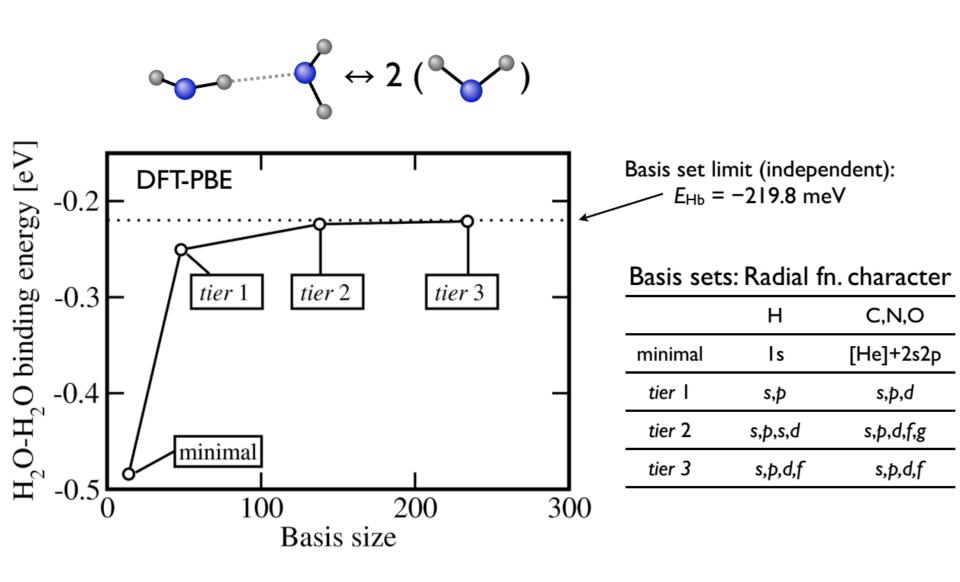
<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield et *al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

• $u_i(r)$: Flexible choice - "Anything you like."

- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important
- → We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations -<u>efficient and accurate approach</u>


V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

<u>"Pool" of trial basis functions:</u> 2+ ionic *u(r)* Hydrogen-like *u(r)* for z=0.1-20

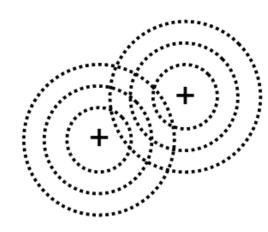

Optimization target: Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

Systematic hier	Au	0	С	Н	
basis (sub)sets, i	[Xe]+6s5d4f	$[\mathrm{He}] + 2s2p$	$[\mathrm{He}] + 2s2p$	1s	minimal
automated const based on dir	$Au^{2+}(6p)$	H(2p,1.8)	H(2p,1.7)	H(2s, 2.1)	Tier 1
Dased off dir	H(4f, 7.4)	H(3d, 7.6)	H(3d, 6.0)	H(2p, 3.5)	
"First tier (level)"	$Au^{2+}(6s)$	H(3s, 6.4)	H(2s, 4.9)		
	H(5g,10)				
	H(6h, 12.8)				
	H(3d,2.5)				
	H(5f, 14.8)	$\mathrm{H}(4f,\!11.6)$	$\operatorname{H}(4f,\!9.8)$	$\operatorname{H}(1s,\!0.85)$	Tier 2
	H(4d, 3.9)	$\operatorname{H}(3p,\!6.2)$	$_{\rm H(3p,5.2)}$	${\rm H}(2p,\!3.7)$	
"Second tier"	H(3p, 3.3)	$\operatorname{H}(3d,\!5.6)$	H(3s, 4.3)	H(2s, 1.2)	
	H(1s, 0.45)	${\rm H}(5g,\!17.6)$	$\mathrm{H}(5g,\!14.4)$	H(3d, 7.0)	
	$\rm H(5g, 16.4)$	$\operatorname{H}(1s,\!0.75)$	H(3d, 6.2)		
	H(6h,13.6)				
	$H(4f, 5.2)^*$	$O^{2+}(2p)$	$_{\rm H(2p,5.6)}$	$\operatorname{H}(4f,\!11.2)$	Tier 3
·····	H(4d, 5.0)	$\mathrm{H}(4f,\!10.8)$	H(2s, 1.4)	$\mathrm{H}(3p,\!4.8)$	
"Third <i>tier</i> "	}	•••	•••	•••	

tic hierarchy of 0 s, iterative nstruction dimers

The basis set: additional parameters to converge


$$h_{ij} = \int d^3 r \varphi_i(\boldsymbol{r}) \hat{h}_{\rm KS} \varphi_j(\boldsymbol{r})$$

• Discretize to integration grid:

$$\int d^3r f(m{r})
ightarrow \sum_{m{r}} w(m{r}) f(m{r})$$

... but even-spaced integration grids are *out*: f(r) strongly peaked near all nuclei!

- Overlapping atom-centered integration grids:
 - Radial shells (e.g., H, light: 24; Au, tight: 147)
 - Specific angular point distribution ("Lebedev") exact up to given integration order l (50, 110, 194, 302, points per shell)

Pioneered by Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Electronic structure methods

Quantum chemistry & many-body theory:

$$\left(\hat{\mathcal{H}}\Psi = E\Psi\right)$$

... successive refinement of $\boldsymbol{\psi}$

"Perdew's ladder"

to exact solution

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

 $E_{tot} = E[n(r)] = T_s[n] + V[n] + V_{es}[n] + E_{xc}[n]$

• Key practical approximation: E_{xc} response / many-body terms: RPA, SOSEX, ... hybrid functionals: non-local exchange meta-GGAs: $\nabla^2 n(r), \nabla^2 \phi(r)$ Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): n(r)

Part I: atom and molecule

Problem I: Hydrogen atom

Tasks:

- Input files needed to run FHI-aims.
- Test the convergence of the total energy with basis size.
- Compare the total energy of the hydrogen atom computed with different methods implemented in FHI-aims. Do all methods converge to the same result?

FHI-aims input files

geometry.in

Atomic structure

x y z

atom 0.0 0.0 0.0 H

atom 1.0 0.0 0.0 H initial_moment 1.0

That's a comment

Units: Positions in Å Energies in eV

control.in

Physical model settings
 xc pw-lda
 charge 0.
 spin collinear

SCF convergence settings

sc_accuracy_eev 1E-2

- sc_accuracy_etot 1E-5
- sc_accuracy_rho 1E-4

sc_iter_limit 100

Species specifics

. . .

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

light

Increased accuracy:

- tight
- really tight

Basis Hartree potential Basis cutoff potential Integration grids

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Default basis sets

.../species_defaults

Predefined species Copy-paste into control.in

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

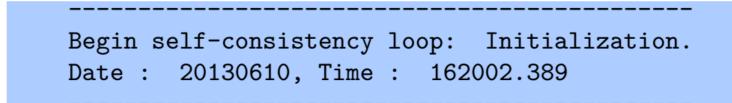
Used to verify important results Converged settings

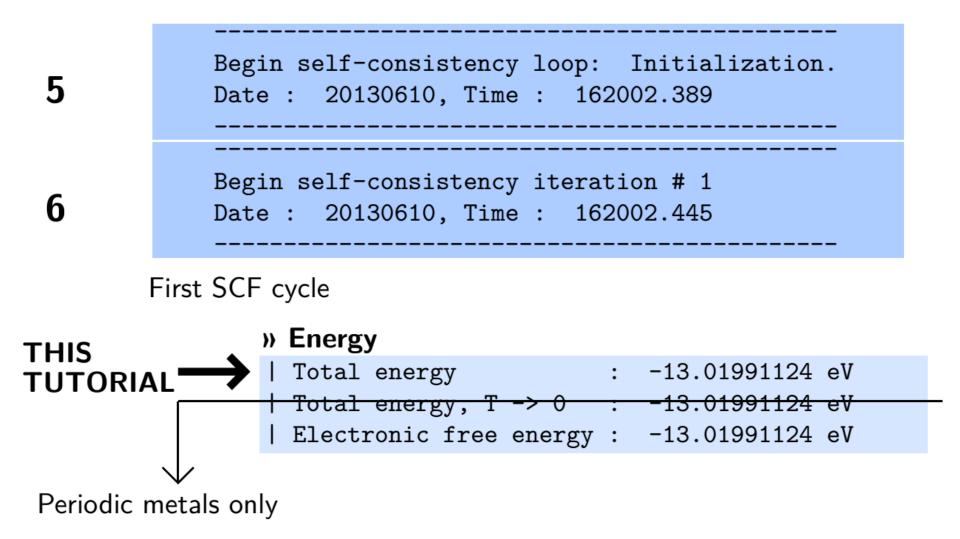
Heavily converged numerical settings Explicit convergence tests

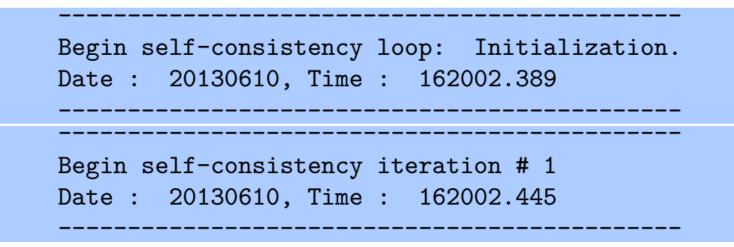
Additionally converge "tiers"

Invoking FHI-aims ...

Reading file control.in.

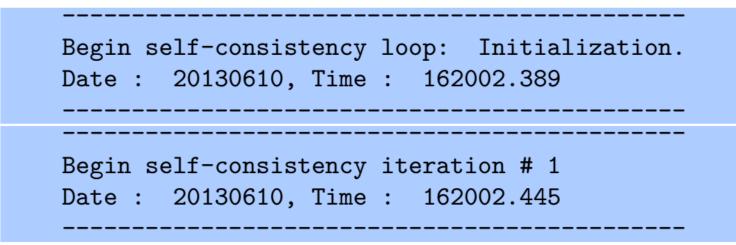

Reading geometry description geometry.in.


Preparing all fixed parts of the calculation.


Geometry independent preparations Basis set generation

1

Geometry dependent preparations Integration grid Initialization of charge density



First SCF cycle

» Self-consistency convergence accuracy

Change of charge density	:	0.6753E-02
Change of sum of eigenvalues	:	0.4376E+00 eV
Change of total energy	:	0.1143E-01 eV

6

Sixth SCF cycle

» Self-consistency convergence accuracy

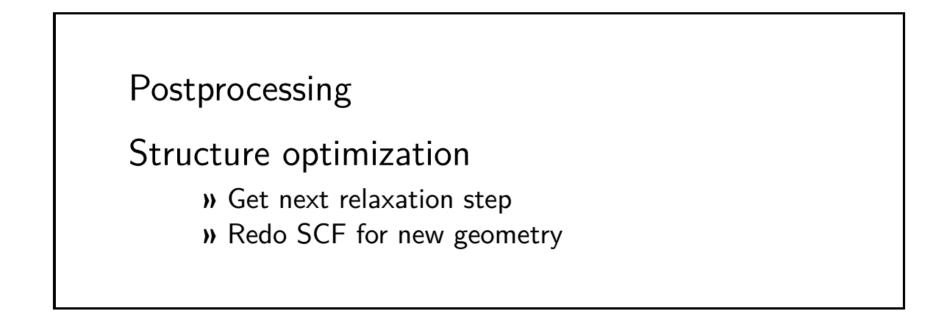
I	Change	of	charge density	:	0.3163E-05
I	Change	of	sum of eigenvalues	:	9415E-05 eV
I	Change	of	total energy	:	0.2388E-10 eV

6

Self-consistency cycle converged.

» Energy and forces

| Total energy uncorrected : -0.130198526094581E+02 eV | Total energy corrected : -0.130198526094581E+02 eV | Electronic free energy : -0.130198526094581E+02 eV


» SCF info

| Number of self-consistency cycles : 6

» Timings

Have a nice day.

Self-consistency cycle converged.

Have a nice day.

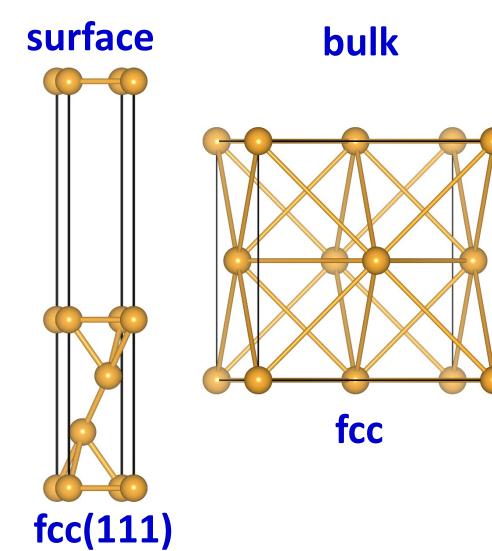
8

Problem II-III: H₂

Tasks:

- Learn how to optimize geometry with FHI-aims.
- Calculate relative energies of different spin states.
- Calculate the atomization energy (ΔH_{at}) .
- See how geometry and atomization energy depend on the exchange-correlation functional.

Problem II-III: H₂


From now on, run FHI-aims via the batch system:

1) copy the file job.sh from the tutorial folder to your working directory

2) submit a job: sbatch --ntasks=XX job.sh

3) To see the progress, type tail -f output

Part II: periodic system

geometry.in

lattice_vector	4.0	0.0	0.0
lattice_vector	0.0	4.0	0.0
lattice_vector	0.0	0.0	4.0
atom	0.0	0.0	0.0 Si
atom	0.0	2.0	2.0 Si
atom	2.0	0.0	2.0 Si
atom	2.0	2.0	0.0 Si

Important practical points

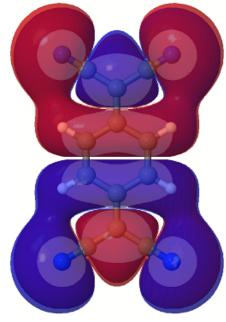
• Each calculation one directory, for example

- > mkdir tutorial1
- > cd tutorial1
- > mkdir O2
- 2 input files (plus 1 for pseudopotential embedding)

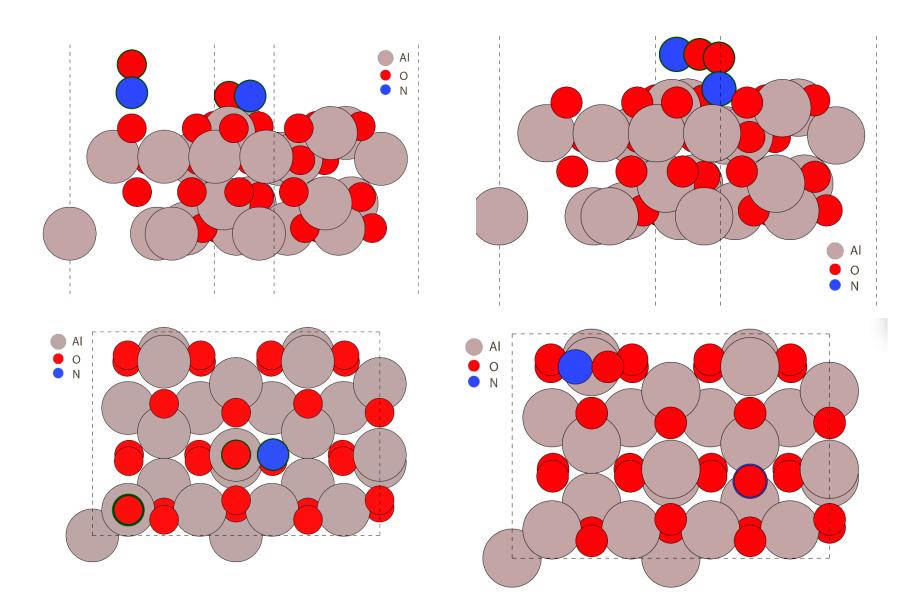
geometry.in control.in

Launching FHI-aims calculation

sbatch --ntasks=XX job.sh


Visualization

Orbitals and densities


Keyword in control.in

output cube eigenstate homo
cube filename HOMO.cube
output cube total_density
cube filename tot_dens_uc.cube

Get: *.cube file - values on a regular 3D grid. Software: jmol \Rightarrow Appendix of handout

Lab 2: Calculate phase diagram of γ -Al₂O₃ (110) surface in NO atmosphere

Lab 2: Calculate phase diagram of γ -Al₂O₃ (110) surface in NO atmosphere Both team and individual work

- 1) Relax NO molecule (team)
- 2) Construct surface slab model from bulk (team)
- 3) Place NO at the surface in three different configurations and *different* coverages for each student (overall 27 structures) (team)
- 4) Distribute the structures among students evenly (3 each) (team)
- 5) Test convergence of NO adsorption energy as a function of the number of relaxed bottom layers for one structure (individual)
- 6) Choose the optimal number of relaxed layers (team)
- 7) Relax the structures, report the energy, discuss the difference between starting and final geometries, calculate, report, and discuss work function (individual)
- 8) Build a surface phase diagram in NO atmosphere combining all obtained energies (team)