Final project

²⁷Co clusters. Magnetism. Optical properties. 0 1 0

Pogodaeva Maria PhD-1 student Center for Photonics and Quantum Materials Mariia.Pogodaeva@skoltech.ru

Problem statement

Johnson, P. B., and Christy, R. W. *Phys. Rev.* 9, 5056 (1974).

Methods

Bulk. ABINIT

- Relaxation
- Magnetic moment
- Dielectric function

Cluster. FHI-aims

- Wulff construction
- Relaxation
- Magnetic moment

ABINIT

ABINIT results. Parameters convergence w/ respect to k-point mesh FCC

ABINIT results. Parameters convergence w/ respect to k-point mesh HCP

a_{exp}=4.73 A

 μ = 2.000 $\forall k$ for smearing = 0.01eV, 0.05 eV; μ = 2.000 for k<=10 for smearing 0.1 eV, μ = 0.000 for k > 10 μ = 0.000 2.000 $\forall k$ for smearing = 0.5 eV, 1.0 eV

$$\mu_{exp} = 1.72$$

ABINIT. DFT+U. Preliminary research.

Paper	U _{eff} ,eV	U, eV	J, eV
Korotin, M. A., Ezhov, S. Y., Solovyev, I. V., Anisimov, V. I., Khomskii, D. I., & Sawatzky, G. A. (1996). Intermediate-spin state and properties of LaCoO 3. <i>Physical Review B</i> , <i>54</i> (8), 5309.	6.88	7.8	0.92
Wdowik, U. D., & Parlinski, K. (2009). Lattice dynamics of Fe-doped CoO from first principles. <i>Journal of Physics: Condensed Matter, 21</i> (12), 125601.	6.1	-	-
Wang, H., Yan, Y., Mohammed, Y. S., Du, X., Li, K., & Jin, H. (2009). The role of Co impurities and oxygen vacancies in the ferromagnetism of Co-doped SnO2 : GGA and GGA+ U studies. <i>Journal of magnetism and magnetic materials</i> , <i>321</i> (19), 3114-3119.	4.08	-	-
Mohammed, Y. S., Yan, Y., Wang, H., Li, K., & Du, X. (2010). Stability of ferromagnetism in Fe, Co , and ni metals under high pressure with GGA and GGA+ U. <i>Journal of magnetism and magnetic materials</i> , <i>322</i> (6), 653-657.	2.4	-	-
Vega, A., & Nolting, W. (1996). Finite-temperature ferromagnetism of fcc cobalt. physica status solidi (b), 193(1), 177-187.	3.2	-	-
Illas, F. (2010). Electronic and magnetic structure of bulk cobalt : The, and ε-phases from density functional theory calculations. <i>The Journal of chemical physics</i> , <i>133</i> , 024701.	3.0	-	-

Cococcioni, M., & De Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. *Physical Review B*, *71*(3), 035105.

ABINIT results. DFT+U

HCP Cobalt $\mu \sim 2.000$ everywhere

ABINIT results. DOS. FCC

Illas, F. (2010). Electronic and magnetic structure of bulk cobalt: The, and ε -phases from density functional theory calculations. *The Journal of chemical physics*, *133*, 024701.

ABINIT results. Dielectric function. FCC

ABINIT results. DOS. HCP

Illas, F. (2010). Electronic and magnetic structure of bulk cobalt: The, and ε -phases from density functional theory calculations. *The Journal of chemical physics*, *133*, 024701.

ABINIT results. Dielectric function. HCP

FHI-aims

Clusters. Wulff construction

Liu J. X. et al. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC //Journal of the American Chemical Society. – 2013. – T. 135. – №. 44. – C. 16284-16287.

79 atoms μ=1.74

For bulk FCC Cobalt lattice constant a=3.522 A

In relaxed cluster interatomic distances vary from 2.36 to 2.49 A (less on the surface, more in the center)

FCC cluster. DOS comparison

Cluster: a = [2.36A, 2.49]; c= [3.92 A, 3.99A]

of atoms

Check dependence on the spin orientation

HCP cluster. DOS comparison

Thank you!