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Course content

Schedule: https://cms-lab.github.io/edu/AMM2021/Schedule.htm

We are here for you!
Adjusted/refined topics based on your interests
Discussion of your research projects

Final projects according to your interests



Course content: Prerequisites

1) Quantum mechanics

2) Basic solid state theory (periodic boundary conditions, Brillouin
zones, k-points)

3) Basic electronic-structure concepts (many-body Schrodinger
equation, Born-Oppenheimer approximation, density functional
theory, Hartree-Fock approximation)

We will briefly review some of the background topics for you



Course content: What it is about

Goal: Teach advanced concepts and tools in materials modeling
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Materials modeling:
+ Interpretation of experiments at the atomic scale

+ Prediction of unexplored materials’ properties



Course content: What it is about
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non-relativistic Schrédinger equation

\P({rl-}, {o;}, t)— wave function, depends on spatial (I;)
and spin (0;) coordinates of ALL particles in the
system, and time t

No analytic solutions for more than two particles 2 need
approximations!



Course content: What it is about

[ The Born-Oppenheimer approximation has
separated the nuclear degrees of freedom, but
we are still left with a many-body problem.

3 How to simplify the problem further?



Course content: What it is about

7 The Hartree-Fock approximation

Slater determinant fulfills the Pauli principle
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Hartree-Fock equation
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No self-interaction, but also no correlation




Course content: What it is about

Density functional theory: Hohenberg-Kohn theorem

H — many-body Hamiltonian

( ) < d(rioq, ...,

TN Oy ) — many-body wave function

— total energy

Ei =T[n]- ZZIJ. n(r) d’r+— Zi
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Standard approximations to £xc[#] : Local density approximation

(LDA), generalized gradient approximation (GGA), meta-GGA

Correlation is included (approximately), but also self-interaction



Course content: What it is about
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Course content: What it is about

Advanced topics:

Hybrid functionals, many-body perturbation theory (GW, Bethe-
Salpeter equation)

Density functional perturbation theory (phonons, electron-phonon
coupling, spectroscopy, electron transport)

Excited state dynamics



Course content: What it is about

Advanced topics:

A DFT calculation corresponds to T=0 K and p = 0 atm. We explain
how to go beyond this approximation (molecular dynamics, ab
initio atomistic thermodynamics, kinetic Monte Carlo)

Bridging materials gap (ab initio modeling versus real materials) 2
use data analysis and machine learning



Assignments and assessment

1) Homeworks: based on the lectures, multiple-choice or free question-and-
answer format.

Assessment: number of correctly answered questions

2) Lab reports: based on computational labs.

Assessment: Task completion, understanding, writing

3) Progress reports on your final projects.

Assessment: Quality of presentation, understanding of the subject

4) Final project (https://cms-lab.github.io/edu/AMM/FinalProject.htm).

Assessment: Scientific quality, quality of presentation, answering questions



First homework: Introduce yourself

Homework assighment:

https://cms-
lab.github.io/edu/AMM2021/homeworks/Homework1.pdf

1. Give a 10-min presentation of your research project most relevant to the course using the following plan:

Introduce yourself (1 min)

Why are you interested in the course (1 min)

e Present your most relevant research projects (3-5 min)

Speculate on possible final project (1-3 min)

2. Look at the list of lectures (https://cms-lab.github.io/edu/AMM2021/Schedule.htm) and mark the most
interesting from your point of view.

Due date: Thursday 1.04 at 9:00 (presentations)



Office hours

No fixed office hours

Simply send me and Maria an email if you have a question or want
to discuss something, we will answer by email or arrange an online

meeting



Lecture 1: Advanced DFT for solids 1



DFT approximations: What is missing?

G.*LIN[WUI]

calculated band-gap (eV)
Lo
L

4- Oc

3]  CAIN(b)

Omg0

MNal’l

- :
O LDA g
S
z
=9
]
L]
5
=
2
=
&
5
3
8
Og;
0 L | T
1.0 1.2

m T I T | T I Y I' T
14 16 18 20 22 24 26 28 ] 6 7

experimental band-gap (V) experimental band-gap (eV)

Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)

We do not know the exact exchange-correlation functional

but we can determine some of its properties!



Exact DFT functional properties: E(N)

O Fractional occupations
Time average -> statistical mixture of pure states:

Y, , probability p;; ¥,, probability p,; etc. - ensemble I'

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)



Exact DFT functional properties: E(N)

O Fractional occupations
Time average -> statistical mixture of pure states:

Y, , probability p;; ¥,, probability p,; etc. - ensemble I'
(0). = X pi{W;|0|W;) - for any operator 0

E[n] = rrnin(T + Vee + Vexr + Vi), [minimize over all T giving
-Nn

the same n(r)]

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)



Exact DFT functional properties: E(N)

O Fractional occupations
Time average -> statistical mixture of pure states:

Y, , probability p;; ¥,, probability p,; etc. - ensemble I'
(0). = X pi{W;|0|W;) - for any operator 0

E[n] = rrmn<T + Vee + Vexr + Vi), [minimize over all T giving
-Nn

the same n(r)]

Fractional number of electrons - ensemble of pure states
with different integer charges:

E[n] = p1Ey + 02Epy—1 + P3Ey+1 + -, p1+p,t+--=1

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)



Exact DFT functional properties: E(N)

3 Fractional occupations

piM+p,(M—1)+ps(M+1D)+-=M+wl<w<l,
Eln] =p1Ey + 02Epy—1 + P3EM41 + -, p1+p,+--=1

min En]
n,[ n(r)dr=M+w

must be convex
/ 2E(N) <E(N-1) +E(N+1)

N

>

E(N)

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)



Exact DFT functional properties: E(N)

3 Fractional occupations

piM+p,M—1D)+ps(M+1D)+-=M+w0<w<l,
Eln] =p1Ey + 02Epy—1 + P3EM41 + -, p1+p,+--=1

min En]=(01—-w)Ey + wEy4+1
n,[ n(r)dr=M+w

must be convex 4
/ 2E(N) <E(N—-1)+ E(N + 1

N 11 N
g M—1MM+1

E(N)
E(N

The exact energy changes piece-wise linearly with N

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982)



Fractional occupations

3 Fractional occupations in Kohn-Sham formalism

n(r) = Xl ()|

Exs(i}h fi}) = Xiti + EcIn] + Excln

/N

kinetic energy Coulomb energy exchange-correlation

1
tl - _E<lpllvzllpl> le(T)Tl(T)dS d3 / energy
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Janak, Phys. Rev. B 18, 7165 (1978)



Fractional occupations

3 Fractional occupations in Kohn-Sham formalism

n(r) = Xl ()|

Exs(ih {fi}) = Xiti + EcIn] + Excnl, t; = —%<I/Ji|\72|1/)i>

Let us define:
n) =Y filYy;@I*, X2, i=N0<f; <1

E({yi, {fi) = Li fiti + Ec[n] + Exc[n]

Janak, Phys. Rev. B 18, 7165 (1978)



Fractional occupations

3 Fractional occupations in Kohn-Sham formalism

Let us define:
n) =%, filyiMI*, 22, fi=N0<f; <1

E{} i) = X, fiti + Ec[n] + Exc[n]

Lagrangian:
QL (il = EQ IfiD) + i () [pilPdr — 1) — u(E; fi — N,

min Q — n, E[n], ¥;
lpi»fiQ [n], ¥,

Janak, Phys. Rev. B 18, 7165 (1978)



Fractional occupations

3 Fractional occupations in Kohn-Sham formalism

Let us define:
n) =%, filyiMI*, 22, fi=N0<f; <1

E{} i) = X, fiti + Ec[n] + Exc[n]

Lagrangian:

QL {IfiY] = EQ () + Ziu(f [pilPdr —1) — u@Ei fi — N),

6Q
SY;

= 0 = Kohn-Sham equations by choosing A; = f;¢;

1 , n(r') Z; SE _
— >V + (f *r' s =X |r_R]|) Vi + g Y1 = &V

Janak, Phys. Rev. B 18, 7165 (1978)



Fractional occupations

3 Fractional occupations in Kohn-Sham formalism

Let us define:
n) =%, filyiMI*, 22, fi=N0<f; <1

E{} i) = X, fiti + Ec[n] + Exc[n]

Lagrangian:

QL {IfiY] = EQ () + Ziu(f [pilPdr —1) — u@Ei fi — N),

aQ aQ oE :

a—fi=Oésetfi =c0528i96—9i=—(a—h—u)51n29i=0
0 _ 0<f<1 aEi =1 6E¢ =0
af-i_l’l) —ﬁ— ) af;: l’t)f;,_ ) af‘i M’ﬁ_

Janak, Phys. Rev. B 18, 7165 (1978)



Approximate functionals

7 Dependence E(N) for an approximate functional:

Energy

LDA/GGA Exact

N-1

N
Number of electrons

N+1

Convex behavior



Approximate functionals

7 Dependence E(N) for an approximate functional:

Hartree-Fock is a functional

Exact within generalized Kohn-
Concave LDA/GGA Sham scheme: E = E[{i}]
_ Hartree-Fock
0 More “DF T-like”: Optimized
1] . .
effective potentials (local
Convex potentials that approximate
the non-local HF exchange)
i numerically complex and
, computationally expensive
N-1 N N+1

Number of electrons



Approximate functionals

[ Connection between the self-interaction
(delocalization) error (SIE) and the convex behavior

0 ol Dependence E(N) for
| 1,2, 3, and o
separated molecules
At A+
1 electron on 1 unit 1/2 electron on 2 units
N N+1 2N 2N+1
ol ol ELDPA/GGA(N) is convex
because of SIE
A b At
1/3 electron on 3 units I1/z>o electron on < units
3N 3N+1 N coN+1

Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)



Band gap problem

7 Observable gap:

EQs =(E(MM+1)—EM))—(E(M) —EM — 1))

0 Kohn-Sham gap:

KS _ M M
Egap = €LuMo — €HOMO

Are they the same?



Janak’s theorem

3 Fractional occupations in Kohn-Sham formalism

Let us define:
n) =%, filyiMI*, 22, fi=N0<f; <1

E{} i) = X, fiti + Ec[n] + Exc[n]

Lagrangian:

QL {IfiY] = EQ () + Ziu(f [pilPdr —1) — u@Ei fi — N),

aQ aQ oE :

a—fi=Oésetfi =c0528i96—9i=—(a—h—u)51n29i=0
0 _ 0<f<1 aEi =1 6E¢ =0
af-i_l’l) —ﬁ— ) af;: l’t)f;,_ ) af‘i M’ﬁ_

Janak, Phys. Rev. B 18, 7165 (1978)



Janak’s theorem

3 Fractional occupations in Kohn-Sham formalism
Derivative w.r.t. f:
n(r) =3 filvim1?  EQ@Q3 D = X fiti + Ec[n] + Exc[n]

fn(r)n(r)d3 d3r' — f dgT'Z]

|r—7'|

Zj
n(r
R (r)

—%1721/)1-+(fd3 o) -

lr—r’|

|r

OE SE
N LG R AGE, j P2y = g =
df; n :

from KS equations  from stationary condition
with respect to ;

Janak, Phys. Rev. B 18, 7165 (1978)



Janak’s theorem
3 Fractional occupations in Kohn-Sham formalism
Lagrangian:
QUL (N = E@L D + T4 Ipil?dr —1) — uE; fi = N,

a—Q_ = 0 >set f; = cos? Hl-%% = —(g —w)sin26; =0

ofi

Three cases: =u0<f; <1
& F :u'fl =1
& F :u'fl =0

Note: There can be additional constraints on f;
(electronic smearing for metals, finite temperature)

Janak, Phys. Rev. B 18, 7165 (1978)



Janak’s theorem

O Fractional occupations in Kohn-Sham formalism

Janak's theorem:
dE|[n]
df;
Also: E[n] is minimized when the fractional occupation is

in EHoMO> and

dE[n] dE|[n]

N | Tnomg = oMo = HM =)

From the piece-wise linear behavior of the exact
functional 2 eyopo(M — 6) = const for 0 < § < 1 for
exact KS potential (IP theorem)

What's up with the band gap?



Band gap problem

7 Observable gap:

EQs =(E(MM+1)—EM))—(E(M) —EM — 1))

7 From Janak’s theorem and the exact functional
condition:

E(M+1) — E(M) = [ eypr(HAf = bl = el

EMM)-EM—-1) = fol em()Af = ex = eHomo

obs _ M+1 M
Egap = €nomo — EHomo
BUT!

KS __ M M
Egap = €Lumo — €HOMO



Band gap problem

O Derivative discontinuity
6Exc(n]

EObs _ EKS _ cM+1 M 6Exc[n]
on(r)

3 — & =
gap gap HOMO LUMO 57’1(1‘)

M+6 M-6

For the exact functional, the KS gap is not the same as
the observable gap!

Thus, there are TWO problems:

1) non-straight-line behavior of the total energy with
number of electrons for approximate functionals

2) Eggg # Ejay, for exact functional, and we do not know
how large the difference is

Observation: improving E(N) behavior improves the KS
gaps compared to experiment



Band gap problem

7 Generalized Kohn-Sham (GKS):

Exact
Concave LDA/GGA
_ Hartree-Fock
g
Convex
"
N-1 N N+1

Number of electrons

Hartree-Fock “overcorrects” the discontinuity (correlation
part is missing)
Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)



Band gap problem

[ Hartree-Fock is self-interaction free, but...
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Brice Arnaud, Universit’e de Rennes, France



Band gap problem

O Hybrid functionals

Energy

Convex

Exact Idea: combine HF with

Concave LDA/GGA GGA to reduce the self-

interaction error:
Hartree-Fock

E[{(y}] = abB{" + (1 - )Ex“ +
ES4 0<a<1

N-1

Num

Approximate E(N) is not
exactly straight and may
have a different slope:
some errors remain

N N+1
ber of electrons

Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)



Hybrid functionals

7 Hybrid functionals £ = aEXF + (1 — a)EL"Y/ %4 +
ELDA/GGA
C

The mixing parameter a depends on the choice of
(semi)local exchange/correlation

EPBE0 = 0.25EHF ({p%5}) + 0.75ELBE + EEBE (choice of a is
based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)



Hybrid functionals

7 Hybrid functionals £ = aEXF + (1 — a)EL"Y/ %4 +
ELDA/GGA
C

The mixing parameter a depends on the choice of
(semi)local exchange/correlation

EPBE0 = 0.25EHF ({p%5}) + 0.75ELBE + EEBE (choice of a is
based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)
There can be other parameters

EFSE = 0.25E5 % (w) + 0.75E4° % (w) + Ex " F (w) + EEPE

1 erfc(wr 1 — erfc(wr
Lo SR, () + LR, () = o) | 1 erieten)

J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)



Hybrid functionals

[ Hybrid functionals
EPPEO = 0.25E¢" ({*°}) + 0.75Ex"" + E;PF

theoretical band gap (ev)
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From: “Advanced Calculations for
Defects in Materials: Electronic
Structure Methods”, Alkauskas,
Deak, Neugebauer, Pasquarello,
Van de Walle (eds.), Willey-VCH
(2011)



Hybrid functionals

[ Hybrid functionals

“An ideal hybrid would be sophisticated enough to
optimize n [SVL: a = 1/n] for each system and

property...”
Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?



Tuning hybrids: A practical approach

7 Determine the best a by comparing to more
accurate approaches

EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + Ex " " (w) + EEBE

Energy (eV)
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spin down
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Defect formation energy, eV

Tuning hybrids: A practical approach

[ Determine the best a

EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + Ex " " (w) + EEBE

o0

HSE formation energies for varying a:
| strong dependence for F* and F?*!

=~

)

\ Which «a to use?

- O-rich

I
N

|
o0

0 025 05 075 1
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Tuning hybrids: A practical approach

7 Determine the best a

EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + Ex " " (w) + EEBE
Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree ’

calculated using an MgsO9 embedded cluster

From total energy
differences

1979 Wt t. VBM (eV)




Tuning hybrids: A practical approach

7 Determine the best a

EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + Ex " " (w) + EEBE
Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree ’

calculated using an MgeO9 embedded cluster

From highest
occupied orbital

From total energy
differences

1977 Wt t. VBM (eV)




Tuning hybrids: A practical approach

7 Determine the best a

EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + E5 " " (w) + EEBE

Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree ’

calculated using an MgeO9 embedded cluster

19771 W ot t. VBM (eV)

-

From highest
occupied orbital

From total energy
differences



Energy [eV]

Tuning hybrids: A practical approach

Example: Fe\,, substitutional defects in MgO

3 Is a = 0.25 always good?
EFSE = 0.25E5 " (w) + 0.75E5 "R (w) + Ex " " (w) + EEBE

1 erfc(wr) 1 — erfc(wr)
=~ =5Ry,(r) + LR, (r) = +
10 = r r
I I : I ' I ' " .
w = 0.11 bohr—1 Electron addition energy E ;5 =
e (standard in E(N + 1) — E(N) for the Fe),, defect
8L HSEO06) -
- e (N+1/4)
6 ei(I/) e
N
E gHOMO(N + §
: ( ) Optimal a = 0.6
e (N+1)
1 I ! I ! | ! | ! i HOMO ~
25 00 | There IS an « for which ¢ const

04



Hybrid functionals

[ Hybrid functionals

“An ideal hybrid would be sophisticated enough to
optimize n [SVL: a = 1/n] for each system and
property...”

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

How can we do this?

1) a = 1/, (self-consistent or not)

Skone, Govoni, and Galli, Phys. Rev. B 89, 195112 (2014)

2) & - a(r) - local hybrids

Maier, Arbuznikov, and Kaupp, WIREs Comput Mol Sci. 9, 1 (2019)



Other approaches: Self-interaction correction

Hybrids are a consistent way to improve accuracy, but they are
computationally expensive (30-40 times PBE)

[ Perdew-Zunger self-interaction correction:

1 n;.(rn;,(r’
EPZ-SIC — EDFA _ Ez (j d3rd3r’ io ()i (1) + EXC[nia]>
lo

lr —7'|

where n;, are single-orbital densities
Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

+ exact for any one-electron density
+ fast
- depends on the choice of orbitals representing the density

- not good for many-electron densities in general



Other approaches: Self-interaction correction

0.06 —T T 2 ' ; | ! | T ' ! ' !
’ : : : : : ’ : LC-BLYP —&— ’
: : : é I : : LDA —=—
0.05 ki e P AT P ; LDA/FLO-SIC A
LDA (aug-cc-pvtz) —v¥—— : : ‘ . LDA/FLO-SIC k=1
_ | e R oS S——
LC-BLYP (aug-cc-pvtz) () : PBE/FLO-SIC
004 | LDA/FLO-SIC (aug-cc-pvtz) ° PBE/FLO-SIC k=1 ---5---
CCSD(T) (aug-cc-pvtz) PBE/SCF-SIC —#—
—_ : : experiment - - - -
£ 003 : : :
L H P >
0 002 - Be
T - L‘_g:
0.01
: : : H : : ] 5 | i i
001 |2 ' 2I2 ' 2| . 2| P 2|8 ' ; 6 6.2 6.4 6.6 6.8 7
. \ N
charged H, molecule charged carbon atom

Aquino, Shinde, and Wong, J. Comput. Chem. 41, 1200 (2020)

Locally scaled SIC: reduce SIC in many-electron regions

Vydrov and Scuseria, J. Chem. Phys. 124, 094108 (2006)



Other approaches: DFA+U

Transition-metal atoms with LOCALIZED orbitals (d, f)

<

Self-interaction error = dramatic effects on electronic structure

<

Idea: Correct ON-SITE errors (locally on each atom) only

How?



Other approaches: DFA+U

Idea: Penalize fractional occupations of localized atomic orbitals

Total energy

le (1-6)e oe

isolated ion

ion in solid

— LDA
exact
—— LDA+U correction

E(N+2)

E. Pavarini, E. Koch, F. Anders, and
M. Jarrell

Correlated Electrons: From
Models to Materials

Modeling and Simulation Vol. 2
Forschungszentrum Julich, 2012,

A

N-1 N N-+1 N+2 ISBN 978-3-89336-796-2
Number of electrons



Other approaches: DFA+U

Idea: Penalize fractional occupations of localized atomic orbitals

Electron-electron interaction of localized electrons in mean-
field approximation (Hartree-Fock) = concave

!

Use as penalty!

— LDA
exact
—— LDA+U correction

E(N+2)

E. Pavarini, E. Koch, F. Anders, and
M. Jarrell

Correlated Electrons: From
Models to Materials

Modeling and Simulation Vol. 2
Forschungszentrum Julich, 2012,

N-1 N N-+1 N+2 ISBN 978-3-89336-796-2
Number of electrons

Total energy

A



Other approaches: DFA+U

Hartree-Fock energy of localized electrons in a solid:

ElOC — 2 2 {<¢m¢m,|V|¢m,,¢m,”>nmm”nm’m”, +

{m}o

(<¢m¢m’ |V|¢m”¢m”'> _ <¢m¢m' |Vl¢m”'¢m">)nmm”nm’m”’}

no 1 = % fig{@mlwiX Wil ¢,,1) - occupation matrix

NN

atomic orbitals K5 states

occupation of
KS states

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995)



Other approaches: DFA+U

Hartree-Fock energy of localized electrons in a solid:

ElOC - = 2 {<¢m¢m,|V|¢m,,¢m,”>nmm”nm’m”, +

{m}a

(<¢m¢m’ |V|¢m”¢m”'> _ <¢m¢m’ |Vl¢m”'¢m">)nmm”nm’m”’}

no 1 = % fig{@mlwiX Wil ¢,,1) - occupation matrix

NN

atomic orbitals K5 states

occupation of

KS states

V - screened Coulomb interaction (due to other atomic orbitals s,p,...)

Liechtenstein, Anisimov, and Zaanen, Phys. Rev. B 52, R5467 (1995)



Other approaches: DFA+U
Hartree-Fock energy of localized electrons in a solid:

1 _
F19° = 2 {(bm b VIt By G Mnlirs +
{m}o

(<¢m¢m’ |V|¢m”¢m”'> _ <¢m¢m' |Vlgbm”'gbm"))nzlm”ngl’m”’}

no 1 = % fig{@mlwiX Wil ¢,,1) - occupation matrix

NN

atomic orbitals K5 states

occupation of
KS states

Approximating  (DmPp/ [VIdr i) = US i 8
<¢m¢mI|V|¢mII¢mIII) — (¢m¢ml|V|¢m///¢)m//) =~ (U —])(6mmll6mlmlll — 6mmnl5mlmn)

1 _
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Other approaches: DFA+U

1 —
E'o¢ ~ ~ Zmyel Ungun M + (U = DGy — (U = g om

. ~Tal
Hubbard-like parameter (U ; ii; 7i;)

Penalty for fractional occupations:

AE =E loc(nzlm, in solid) — E loc(nz,lm, in ion)

Eloc(nzlm, in ion )

1 _ U¥)
=5 z {Unpmn 71+ (U — Dnpmny o1} — > z ng..
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Other approaches: DFA+U

1 —
E'o¢ ~ ~ Zmyel Ungun M + (U = DGy — (U = g om

. N
Hubbard-like parameter (U ; ii; 7i;)

Penalty for fractional occupations:

AE =E loc(nzlm, in solid) — E loc(nzlm, in ion)

Eloc(nzlm, in ion )

1 _ U¥)
=5 z {Unpmn 71+ (U — Dnpmny o1} — > z ng..
mo

{m}o
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Epra+y = Eppa + AE = Eppy + z Nmm — z no _mgg

2
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Other approaches: DFA+U

w-=7
Epra+u = Eppa + AE = Epps + 5 2 Nmm — z ny _meg
mo

mm'o
Notes:
e U — J can be considered as an effective U
e First derivations were not rotationally invariant

¢ One can go beyond mean-field, then need both U and |

o El"c(n;’nm, in ion) is called double-counting term

e Depends on the choice of atomic basis ¢,,

e U depends on atom, orbital (d, f), atom environment

How to determine U?



Other approaches: DFA+U

U -J)
Epra+v = Eppa + AE = Eppy + 5 2 Nmm — z no o M
mo

mm'o

How to determine U?

e Compare DFA+U with experiment (band gap, structure) - often
unavailable

e Compare DFA+U with accurate methods (GW) - expensive
¢ Ensure linear E(N) - done using linear-response DFT

¢ From constrained random-phase approximation calculations -

expensive, complex formalism

Pavarini, Koch, Vollhardt, and Lichtenstein, The LDA+DMFT approach to strongly correlated
materials Modeling and Simulation Vol. 1 Forschungszentrum Juelich, 2011, ISBN 978-3-89336-

734-4
U depends on atom, orbital (d, f), atom environment



Take-home messages:

Know what you are doing!
Non-linearity of E(N) = DFA failures

Functional development - active field of research (SIC, DFA+U, local
hybrids, a = i, meta-GGA)
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J Sun, A Ruzsinszky, JP Perdew
Physical review letters 115 (3), 036402



