Advanced Materials Modeling:

Statistical mechanics and *ab initio* atomistic thermodynamics

Center for Energy Science and Technology (CEST) Skolkovo Institute of Science and Technology Moscow, Russia

Why thermodynamics for materials?

Thermodynamics determines defect concentrations and phase transformations, and influences magnetic properties, surface reactions, and crystal growth (the latter two are controlled by *kinetics*)

There is always a particle exchange between the material and its environment at finite *T*

Example: Phonons

Heat capacity of a solid (Debye model - phonons in a box)

Example

Consider a metal surface in an oxygen atmosphere

Adsorption will take place until the equilibrium is reached

Example

Consider a metal surface in an oxygen atmosphere

The point of equilibrium depends on temperature, pressure, volume, ...

Thermodynamic potentials

Internal energy $U(S, V, \{N\})$ Enthalpy $H(S, p, \{N\}) = U + pV$ Helmholtz free energy $F(T, V, \{N\}) = U - TS$ Gibbs free energy $G(T, p, \{N\}) = U - TS + pV$ Grand potential $\Omega(T, p, \{\mu\}) = U - TS - \sum_i N_i \mu_i$ Gibbs free energy 2 $G(T, p, \{N_{i \neq j}\}, \mu_j) = G - N_j \mu_j$ Energy balance equation

$$dU = TdS - pdV + \sum_{i} \mu_{i} dN_{i}$$

with chemical potentials

$$\mu_{i} = \left(\frac{\partial U}{\partial N_{i}}\right)_{S,V} = \left(\frac{\partial H}{\partial N_{i}}\right)_{S,p} = \left(\frac{\partial F}{\partial N_{i}}\right)_{T,V} = \left(\frac{\partial G}{\partial N_{i}}\right)_{T,p}$$

Reaching the equilibrium

- At constant T a system minimizes its free energy (-TS), not the internal energy U
- If also volume V is constant, the energy minimized is the Helmholtz free energy F = U TS

If (T, p) are constant, the energy minimized is the Gibbs free energy G = U + pV - TS

Statistical thermodynamics

$$S = k \log W$$

W - number of *microstates* for a given *macrostate*

This is "only" a postulate - but it works!

Why it should work: (i) in equilibrium $W \rightarrow \max$, so that $S \rightarrow \max$; (ii) S is additive, but W is multiplicative

Statistical thermodynamics

Let us consider a system that can be in one of states i with energy E_i

At a given *T*, the probability of the system to be in state *i* is $P_i = \frac{e^{-E_i/kT}}{Z}$, $Z = \sum_i e^{-E_i/kT}$, $\sum_i P_i = 1$

Ergodic hypothesis: average over time is equal to the average over ensemble - holds if all states are equiprobable (for most realistic systems)

What are the average values of entropy and thermodynamic potentials?

Statistical thermodynamics

Consider the ensemble of *N* replicas of the system - let us count microstates of this ensemble

A microstate describes which replicas are in which state, while a macrostate describes how many replicas are in each state; thus: $W = \frac{N!}{N_1!(N-N_1)!} \frac{(N-N_1)!}{N_2!(N-N_1-N_2)!} \dots = \frac{N!}{N_1!N_2!\dots}$ where N_1 , N_2 ,... are the numbers of the replicas in state 1, 2,...

 $N_i = NP_i = N \frac{e^{-E_i/kT}}{Z}, \tilde{S} = k \ln W = k \ln(N!) - k \sum_i \ln(N_i!)$ Z - canonical partition function Use Stirling's formula: $\ln(N!) \approx N \ln N - N$

Statistical thermodynamics $\tilde{S} = k \ln W = N k \ln Z + \frac{N}{TT} \sum_{i} E_{i} e^{-E_{i}/kT}$ Internal energy, by definition: $\widetilde{U} = \frac{N}{z} \sum_{i} E_{i} e^{-E_{i}/kT} = \frac{NkT^{2}}{z} \frac{\partial Z}{\partial T}$ $U = \frac{\widetilde{U}}{N} = \frac{kT^2}{Z} \frac{\partial Z}{\partial T} = kT^2 \frac{\partial \ln Z}{\partial T}$ $S = \frac{\tilde{S}}{N} = \frac{k \ln W}{N} = k \ln Z + \frac{U}{T} = k \ln Z + kT \frac{\partial \ln Z}{\partial T}$ $F = U - TS = -kT \ln Z$ $G = F + pV = -kT\ln Z + pV$ $\mu(T,p) = \left(\frac{\partial G}{\partial N}\right)_{T,p} = \frac{\partial}{\partial N} (-kT \ln Z + pV)_{T,p}$

Statistical thermodynamics

Practical example: surface free energy

Change in Gibbs free energy upon addition of O to the surface: $\Delta G = G_{surf}(N_0 + 1) - (G_{surf}(N_0) + \frac{1}{2}\mu_{O_2})$ since $\mu_0 = \frac{1}{2}\mu_{O_2}$ Goal - find surface composition that minimizes *G* at given *T*, *p*

Surface modeling

1) Slab model (supercell approach)

2) Cluster model:

- + isolated defects or adsorbates
- border effects

Embedding: point charges (ionic systems), dangling bond saturation (covalently-bound systems),... + regular surfaces
+ coverage dependence
± defect-defect or adsorbateadsorbate interaction

> embedded cluster

Surface modeling: important issues

- 1) Finite slab thickness (surface-surface interaction)
- 2) Finite vacuum layer thickness (image-image interactions)
- 3) Long-range interactions (charge, dipole moment)

4) Surface polarity

dipole correction

Statistical thermodynamics

Practical example: surface free energy

Change in Gibbs free energy upon addition of O to the surface: $\Delta G = G_{surf}(N_0 + 1) - (G_{surf}(N_0) + \frac{1}{2}\mu_{O_2})$ since $\mu_0 = \frac{1}{2}\mu_{O_2}$ Goal - find surface composition that minimizes *G* at given *T*, *p*

Statistical thermodynamics

Practical example: surface free energy

 $\Delta \gamma(N_0, T, p) = \frac{1}{A} \left[G_{surf}(N_0, T, p) - G_{surf}(N_0^{ref}, T, p) - \mu_0 \left(N_0 - N_0^{ref} \right) \right] \rightarrow \min_{N_0}$

where A is the surface area, N_0^{ref} is the number of O atoms in the reference system

$$G_{surf}(N_0) - G_{surf}(N_0^{ref}) = \Delta E_{surf} + \Delta U_{vib} - T\Delta S_{vib} - T\Delta S_{conf} + p\Delta V$$
$$\mu_0(T,p) - ?$$

In thermodynamic equilibrium, μ is the same everywhere (gas, surface, bulk) - can calculate μ in gas

Statistical thermodynamics

Let us consider a gas of *N* non-interacting diatomic (for simplicity) molecules

Statistical thermodynamics

Let us consider a gas of *N* non-interacting diatomic (for simplicity) molecules

Each molecule has the following degrees of freedom: nuclear, electronic, *translational*, rotational, vibrational

$$Z = \frac{(z_{transl})^N}{N!} (z_{rot})^N (z_{vib})^N (z_{el})^N (z_{nucl})^N$$

translational states are invariant with respect to any permutations of molecules (indistinguishable molecules)

 z_x - partition function for the degree of freedom x for a single molecule

Statistical thermodynamics $\mu(T,p) = \frac{\partial}{\partial N} (-NkT \ln(z_{transl}) + kT \ln N! - NkT \ln(z_{rot}) - NkT \ln(z_{rot})) + NkT \ln(z_{rot}) + NkT \ln(z_$

Remember ideal gas law pV = NkT and Stirling's formula

$$\mu(T,p) = -kT \ln\left(\frac{z_{transl}}{N}\right) - kT \ln(z_{rot}) - kT \ln(z_{vib}) - kT \ln(z_{el}) - kT \ln(z_{nucl}) + kT$$

$$\frac{z_{transl}}{N} = \frac{V}{N} \int e^{-\frac{\hbar \mathbf{k}^2}{2mkT}} d\mathbf{k} = \frac{V}{N} \left(\frac{2\pi mkT}{\hbar^2}\right)^{\frac{3}{2}} = \frac{kT}{p} \left(\frac{2\pi mkT}{\hbar^2}\right)^{\frac{3}{2}}$$

required input - molecule's mass m $z_{el} = \sum_{i} (2s_i + 1)e^{-\frac{E_i}{kT}} \approx (2s_0 + 1)e^{-\frac{E_0}{kT}} \rightarrow \mu_{el} \approx E_0 - kT \ln(2s_0 + 1)$ required input - E_0 , S

Statistical thermodynamics

$$z_{rot} = \frac{1}{\sigma} \sum_{J} (2J+1) e^{-\frac{B_0 J (J+1)}{kT}} \approx \frac{1}{\sigma} \int_0^\infty (2J+1) e^{-\frac{B_0 J (J+1)}{kT}} dJ = \frac{T}{\sigma \theta_r}$$

where $\sigma = 2$ for homonuclear molecules (indistinguishable with respect to permutation of the two identical nuclei), $\sigma = 1$ for heteronuclear molecules,

$$\theta_r = \frac{\hbar^2}{2kI}$$
, $I = \frac{m_A m_B}{m_A + m_B} d^2$, d is the bond length

 $\mu_{rot} \approx -kT \ln\left(\frac{2kTI}{\sigma\hbar^2}\right)$, required input - rotational constant (calculated or from microwave spectroscopy)

Statistical thermodynamics

$$z_{vib} = \prod_{i=1}^{M} \sum_{n=0}^{\infty} e^{-(n+\frac{1}{2})\frac{\hbar\omega_i}{kT}} = \prod_{i=1}^{M} e^{-\frac{\hbar\omega_i}{2kT}} \sum_{n=1}^{\infty} e^{-\frac{n\hbar\omega_i}{kT}} =$$

$$= \prod_{i=1}^{M} \frac{e^{-\frac{\hbar\omega_i}{2kT}}}{1-e^{-\frac{\hbar\omega_i}{kT}}}$$
 (used the fact that sum over *n* is a geometric series)

For a diatomic molecule $\mu_{vib} = \frac{\hbar\omega}{2} + kT \ln(1 - e^{-\hbar\omega/kT})$ required input - vibrational frequency ω

In most practical cases, we can neglect the interaction between nuclear spins, so that $z_{nucl} \approx 1$ (not correct at very low temperatures)

□ Ab initio atomistic thermodynamics

It is convenient to define a reference for $\mu(T, p)$: $\mu(T, p) = E_0 + \Delta \mu(T, p)$

Alternatively: $\Delta \mu(T, p) = \Delta \mu(T, p^{o}) + k_{B}T \ln(p/p^{o})$ and $\Delta \mu(T, p^{o} = 1 \text{ atm})$ from thermochemical tables (e.g., JANAF)

□ Ab initio atomistic thermodynamics

□ Ab initio atomistic thermodynamics

Example: Metal surface in contact with O₂ gas

surface

bulk Pd metal

Reservoir: $\mu_0(T, p_{O_2})$ from ideal gas, $N_0^{ref} = 0$ (bare metal surface is the reference system), $\frac{1}{2}E_{O_2}$ is the reference for the chemical potential of O: $\mu_0 = \Delta \mu_0 + \frac{1}{2}E_{O_2}$

Neglect for now
$$\Delta F_{vib}$$
 and $T\Delta S_{conf}$
$$\Delta \gamma(T, p_{O_2}) = \frac{1}{A} \left[E_{surf}(N_O) - E_{surf}(0) - N_O \frac{1}{2} E_{O_2} \right] - \frac{1}{A} N_O \Delta \mu_O(T, p_{O_2})$$

□ Ab initio atomistic thermodynamics

Vibrational contributions to the surface free energy:

$$\Delta F_{vib}(T,V) = V \int_0^\infty f(T,\omega) \left(\sigma(\omega) - \right)^{\infty} f(T,\omega) \left(\sigma(\omega) - \right)$$

Only <u>changes</u> in vibrational free energy contribute to the surface free energy

Make estimate from simple models

e.g., Einstein model: $\sigma(\omega) = \delta(\omega - \langle \omega \rangle)$

 $\left< \omega \right>_{
m Pd}$ (bulk) ~ 25 meV

Surface-induced variations of substrate modes

K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001)

First-principles atomistic thermodynamics: constrained equilibria

C.M. Weinert and M. Scheffler, Mater. Sci. Forum 10-12, 25 (1986); E. Kaxiras *et al.*, Phys. Rev. B 35, 9625 (1987);

K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2001); Phys. Rev. B 68. 045407 (2003)

M. Valtiner, M. Todorova, G. Grundmeier, and J. Neugebauer, PRL 103, 065502 (2009)

When vibrations do matter

M. Valtiner, M. Todorova, G. Grundmeier, and J. Neugebauer, PRL 103, 065502 (2009)

Polar surfaces

Paraelectric lithium niobate (LiNbO₃) stoichiometric surfaces:

 $\Delta \phi \approx 250 \text{ V} >> \text{E}_{g}/\text{e} \approx 3.7 \text{ V} \rightarrow \text{surface charge almost completely passivated}$

Polar surfaces

Where to cut?

Surface charge = ± 2.5e

Ferroelectric lithium niobate LiNbO₃.

Unrelaxed stoichiometric surface and layer stacking:

Ferroelectric lithium niobate LiNbO₃

Unrelaxed stoichiometric surface and layer stacking:

Surface and environment.

Chemical potentials μ_{Li} , μ_{O} , and μ_{Nb} such that: 1) bulk LN is stable:

 $\mu_{Li} + \mu_{Nb} + 3\mu_O = g_{IN}^{bulk}$

2) no other condensed phases are stable:

 $2\mu_{Li} + \mu_O < g_{Li_2O}^{bulk}, \ 2\mu_{Nb} + 5\mu_O < g_{Nb_2O_5}^{bulk}$

Phase diagram for the *negative* surface

Levchenko, Rappe, PRL 100, 256101 (2008)

Phase diagram for the *positive* surface

Surface charge passivation

Fixed stoichiometry: surface charge passivated by electrons and holes.

About 1e/unit cell is transferred

Most stable terminations: explanation positive surface: negative surface: Li₂-O₃-Nb- -Li-O

Accommodates compensating h⁺: additional Li stabilizes h⁺ by forming Li⁺ Accommodates compensating e⁻ : additional LiO stabilizes e⁻ by forming LiO⁻

Compensation with ions is preferred over compensation with mobile charges!

Levchenko, Rappe, PRL 100, 256101 (2008)